Abstract
The administration of human Epidermal Growth Factor (hEGF) for diabetic ulcer treatment has been known to have high effectiveness because hEGF has mitogenic properties and has been proved to increase epithelial cell proliferation both in vitro and in vivo. However, hEGF in environmental conditions of diabetic ulcers is known to have low stability, so it is necessary to repeat the administration or protect the hEGF using suitable preparation. This study aims to produce a new drug delivery system in the form of chitosan nanoparticle as a therapy for diabetic ulcers. The nanoparticle formulation was carried out by varying hEGF concentrations using the ionic gelation method with sodium tripolyphosphate (Na-TPP) as a crosslinker and Polyethylene glycol (PEG) as a stabilizer. Chitosan-hEGF nanoparticle formed were characterized using particle size analysis, polydispersity index, zeta potential, SEM and TEM, pH, and FTIR to observe the functional groups. Chitosan-hEGF nanoparticle-containing 0.1% chitosan, 0.15% sodium tripolyphosphate (Na-TPP), 2% polyethylene glycol 400 (PEG 400), and 75 ng/mL hEGF has the smallest particle size with an average of 600.6 nm and D90 value of 135.7 nm. Nanoparticle formed were relatively stable with zeta potential reaching +41,29. The results of in vitro testing showed that hEGF 50 ng/mL had an optimal cell viability percentage with a value of 192%.
Full text article
Authors
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.