Abstract
The exclusive, low-cost nominal technology for the meagre entrepreneurs of Silk dyeing effluent has been planned and executed. Environmental pollutants exit like Silk dyeing effluent are destructive and needs a high-cost Common Effluent Treatment Plant (CETP) to achieve Zero effluent discharge limits which are not reasonably priced for a low venture capitalist. The Green leafy vegetable Brassica juncea sowed seeds were treated in pot study with fresh water, raw Silk dyeing effluent and Biotreated effluent (with Pseudomonas fluorescens and Azospirillum sp. biofertilizers separately). After 45th days the GLV’s extracts Brassica juncea were grown in fresh water (BJN), in crude effluent (BJE) and in biotreated effluent (BJT) were subjected to UV, FTIR and HPLC analysis. Thus, from the functional group studies by FT-IR, the alcohol, alkane, alkyl halide and amine groups were found in GLV irrespective of the treatments, even in crude effluent, the plants managed to synthesize these organic compounds. The isocyanide group was found only in B. juncea, grown in fresh water, which was unable to synthesize isocyanide group in plants grown in crude effluent and biotreated effluent. While the biotreated B. juncea methanolic extracts had shown two peaks of similar to the freshwater B.juncea methanolic extracts whereas the crude effluent had its effect in HPLC Analysis. So it clearly indicates that the effluent's effects have been encountered by the Pseudomonas fluorescens.
Full text article
Authors
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.