Role of Enzymes in Causing Neurological Disorders

Vysakh Visweswaran (1) , Roshni PR (2)
(1) Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi-682041, Kerala, India, India ,
(2) Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi-682041, Kerala, India, India

Abstract

Diseases of the nervous system are always associated with poor prognosis and limited treatment options. The fragile nature of the neurons and their inability to replicate means that neurological disorders are  associated with a permanent disability. Pharmacotherapy of neurological diseases requires understanding the molecular mechanisms involved in the disease pathology. In most of the cases a faulty cellular biochemical pathway is involved, resulting from a defective enzyme. This article focusses on role of enzymes in various neurological disorders. To review pertinent literature and summarise the role of enzymes in the underlying pathology of various neurological disorders. A comprehensive literature search was conducted using PubMed, SCOPUS, J-GATE and Google Scholar and relevant papers were collected using the keywords enzymes, Alzheimer’s disease, redox, thiamine, depression, neuro transmitters, epileptogenesis. The literature review highlighted the role of enzymes in major neurological disorders and their potential to be used as drug targets and biomarkers. Identifying defective enzymes gives us new molecular targets to focus on for developing more effective pharmacotherapeutic options. They can be also considered as potential biomarkers. An abnormal enzyme is most often a direct result of an underlying genetic abnormality. Identifying and screening for these genetic abnormalities can be used in early identification and prevention of disease in individuals who have a genetic predisposition. The modern advances in genetic engineering shows a lot of promise in correcting these abnormalities and development of revolutionary cures although ethical concerns remain.

Full text article

Generated from XML file

References

Adams, M. N., Ramachandran, R., Yau, M. K., Suen, J. Y., Fairlie, D. P., Hollenberg, M. D., Hooper, J. D. 2011. Structure, function and pathophysiology of protease activated receptors. Pharmacology & Therapeutics, 130(3):248–282.

Alam, J., Sharma, L. 2019. Potential Enzymatic Targets in Alzheimer’s: A Comprehensive Review. Current Drug Targets, 20(3):316–339.

Allen, E. M., Mieyal, J. J. 2012. Protein-Thiol Oxidation and Cell Death: Regulatory Role of Glutaredoxins. Antioxidants & Redox Signaling, 17(12):1748–1763.

Annadurai, N., Agrawal, K., Džubák, P., Hajdúch, M., Das, V. 2017. Microtubule affinity-regulating kinases are potential druggable targets for Alzheimer’s disease. Cellular and Molecular Life Sciences, 74(22):4159–4169.

Avila, J., Wandosell, F., Hernández, F. 2010. Role of glycogen synthase kinase-3 in Alzheimer’s disease pathogenesis and glycogen synthase kinase-3 inhibitors.

Berdichevsky, Y., Dryer, A. M., Saponjian, Y., Mahoney, M. M., Pimentel, C. A., Lucini, C. A., Usenovic, M., Staley, K. J. 2013. PI3K-Akt Signaling Activates mTOR-Mediated Epileptogenesis in Organotypic Hippocampal Culture Model of Post-Traumatic Epilepsy. Journal of Neuroscience, 33(21):9056–9067.

Boison, D. 2010. Adenosine Dysfunction and Adenosine Kinase in Epileptogenesis. The Open Neuro science Journal, 4(1):93–101.

Boison, D. 2016. Adenosinergic signaling in epilepsy. Neuropharmacology, 104:131–139.

Cacabelos, R., Carril, J., Cacabelos, N., Kazantsev, A., Vostrov, A., Corzo, L., Cacabelos, P., Goldgaber, D. 2019. Sirtuins in Alzheimer’s Disease: SIRT2- Related GenoPhenotypes and Implications for PharmacoEpiGenetics. International Journal of Molecular Sciences, 20(5):1249–1249.

Carter, A. N., Born, H. A., Levine, A. T., Dao, A. T., Zhao, A. J., Lee, W. L., Anderson, A. E. 2017. Wortmannin Attenuates Seizure-Induced Hyperactive PI3K/Akt/mTOR Signaling, Impaired Memory, and Spine Dysmorphology in Rats. eNeuro, 4(3):1–15.

Chen, Y., Huang, X., w. Zhang, Y., Rockenstein, E., Bu, G., Golde, T. E., Masliah, E., Xu, H. 2012. Alzheimer’s -Secretase (BACE1) Regulates the cAMP/PKA/CREB Pathway Independently of Amyloid. Journal of Neuroscience, 32(33):11390– 11395.

Choy, K. R., Watters, D. J. 2018. Neurodegeneration in ataxia-telangiectasia: Multiple roles of ATM kinase in cellular homeostasis. Developmental Dynamics, 247(1):33–46.

Clossen, B. L., Reddy, D. S. 2017. Novel therapeutic approaches for disease-modification of epileptogenesis for curing epilepsy. Biochimica et Biophysica Acta (BBA) Molecular Basis of Disease, 1863(6):1519–1538.

Dai, H., Sinclair, D. A., Ellis, J. L., Steegborn, C. 2018. Sirtuin activators and inhibitors: Promises, achievements, and challenges. Pharmacology & Therapeutics, 188:140–154.

Dhavan, R., Tsai, L. H. 2001. A decade of CDK5. Nature Reviews Molecular Cell Biology, 2(10):749– 759.

Dixit, A. B., Banerjee, J., Tripathi, M., Sarkar, C., Chandra, P. S. 2017. Synaptic roles of cyclin-dependent kinase 5 & its implications in epilepsy. The Indian journal of medical research, 145(2):179–188.

Dixit, A. B., Tripathi, M., Chandra, P. S., Banerjee, J. 2016. Molecular biomarkers in drug-resistant epilepsy: Facts & possibilities. International Journal of Surgery, 36:483–491.

Drucker, K. L., Paulsen, A. R., Giannini, C., Decker, P. A., Blaber, S. I., Blaber, M., Uhm, J. H., O’Neill, B. P., Jenkins, R. B., Scarisbrick, I. A. 2013. Clinical significance and novel mechanism of action of kallikrein 6 in glioblastoma. Neuro-Oncology, 15(3):305–318.

Estrada, A. A., Chan, B. K., Baker-Glenn, C., et al. 2014. Discovery of Highly Potent, Selective, and Brain Penetrant Aminopyrazole Leucine-Rich Repeat Kinase 2 (LRRK2) Small Molecule Inhibitors. Journal of Medicinal Chemistry, 57(3):921–936.

Gentile, M. T., Reccia, M. G., Sorrentino, P. P., Vitale, E., Sorrentino, G., Puca, A. A., Colucci-D’Amato, L. 2012. Role of Cytosolic Calcium-Dependent Phospholipase A2 in Alzheimer’s Disease Pathogenesis. Molecular Neurobiology, 45(3):596–604.

Gravina, S. A., Mieyal, J. J. 1993. Thioltransferase is a specific glutathionyl mixed-disulfide oxidoreductase. Biochemistry, 32(13):3368–3376.

Hampel, H., Lista, S., Mango, D., Nisticò, R., Perry, G., Avila, J., Hernandez, F., Geerts, H., Vergallo, A. 2019. Lithium as a Treatment for Alzheimer’s Disease: The Systems Pharmacology Perspective. Journal of Alzheimer’s Disease, 69(3):615–629.

Johnson, W. M., Wilson-Delfosse, A. L., Chen, S. G., Mieyal, J. J. 2015. The roles of redox enzymes in Parkinson’s disease: Focus on glutaredoxin. Therapeutic targets for neurological diseases, 2(2).

Kenchappa, R. S., Diwakar, L., Annepu, J., Ravindranath, V. 2004. Estrogen and neuroprotection: higher constitutive expression of glutaredoxin in female mice offers protection against MPTP-mediated neurodegeneration. The FASEB Journal, 18(10):1102–1104.

Kenchappa, R. S., Ravindranath, V. 2003. Glutaredoxin is essential for maintenance of brain mitochondrial complex I: studies with MPTP. The FASEB Journal, 17(6):717–719.

Kochumon, S., Yesodharan, D., Vinayan, K. P., Radhakrishnan, N., Sheth, J., Nampoothiri, S. 2017. GM2 activator protein deficiency, mimic of Tay Sachs disease. International Journal of Epilepsy, 04(02):184–187.

Lanni, C., Garbin, G., Lisa, A., Biundo, F., Ranzenigo, A., Sinforiani, E., Cuzzoni, G., Govoni, S., Ranzani, G. N., Racchi, M. 2012. Influence of COMT Val158Met Polymorphism on Alzheimer’s Disease and Mild Cognitive Impairment in Italian Patients. Journal of Alzheimer’s Disease, 32(4):919–926.

Lin, T. W., Harward, S. C., Huang, Y. Z., McNamara, J. O. 2020. Targeting BDNF/TrkB pathways for preventing or suppressing epilepsy. Neuropharmacology, 167(1):107734.

Liu, C., Zhai, X., Zhao, B., Wang, Y., Xu, Z. 2017. Cyclin I-like (CCNI2) is a cyclin-dependent kinase 5 (CDK5) activator and is involved in cell cycle regulation. Scientific Reports, 7(1):40979.

Liu, S. L., Wang, C., Jiang, T., Tan, L., Xing, A., Yu, J. T. 2016. The Role of Cdk5 in Alzheimer’s Disease. Molecular Neurobiology, 53(7):4328–4342.

Lonze, B. E., Ginty, D. D. 2002. Function and Regulation of CREB Family Transcription Factors in the Nervous System. Neuron, 35(4):605–623.

Martínez, M. F., Martín, X. E., Alcelay, L. G., Flores, J. C., Valiente, J. M. U., Juanbeltz, B. I., Ángeles Gómez Beldarraín, M., López, J. M., Gonzalez Fernández, M. C., Salazar, A. M., Gandarias, R. B., Borda, S. I., Marqués, N. O., Amillano, M. B., Zabaleta, M. C., de Pancorbo, M. M. 2009. The COMT Val158 Met polymorphism as an associated risk factor for Alzheimer disease and mild cognitive impairment in APOE 4 carriers. BMC Neuroscience, 10(1):125.

Ozcan, C., Battaglia, E., Young, R., Suzuki, G. 2015. LKB1 Knockout Mouse Develops Spontaneous Atrial Fibrillation and Provides Mechanistic Insights Into Human Disease Process. Journal of the American Heart Association, 4(3):1733.

Sabens, E. A., Distler, A. M., Mieyal, J. J. 2010. Levodopa Deactivates Enzymes That Regulate Thiol-Disulfide Homeostasis and Promotes Neuronal Cell Death: Implications for Therapy of Parkinson’s Disease. Biochemistry, 49(12):2715– 2724.

Schedin-Weiss, S., Inoue, M., Hromadkova, L., Teranishi, Y., Yamamoto, N. G., Wiehager, B., Bogdanovic, N., Winblad, B., Sandebring-Matton, A., Frykman, S., Tjernberg, L. O. 2017. Monoamine oxidase B is elevated in Alzheimer disease neurons, is associated with γ-secretase and regulates neuronal amyloid β-peptide levels. Alzheimer’s Research & Therapy, 9(1).

Serenó, L., Coma, M., Rodríguez, M., Sánchez-Ferrer, P., Sánchez, M. B., Gich, I., Agulló, J. M., Pérez, M., Avila, J., Guardia-Laguarta, C., Clarimón, J., Lleó, A., Gómez-Isla, T. 2009. A novel GSK-3β inhibitor reduces Alzheimer’s pathology and rescues neuronal loss in vivo. Neurobiology of Disease, 35(3):359–367.

Weltha, L., Reemmer, J., Boison, D. 2019. The role of adenosine in epilepsy. Brain Research Bulletin, 151:46–54.

Wilhelmus, M. M., de Jager, M., Bakker, E. N., Drukarch, B. 2014. Tissue Transglutaminase in Alzheimer’s Disease: Involvement in Pathogenesis and its Potential as a Therapeutic Target. Journal of Alzheimer’s Disease, 42(s3):S289–S303.

Yao, C., Johnson, W. M., Gao, Y., Wang, W., Zhang, J., Deak, M., Alessi, D. R., Zhu, X., Mieyal, J. J., Roder, H., Wilson-Delfosse, A. L., Chen, S. G. 2013. Kinase inhibitors arrest neurodegeneration in cell and C. elegans models of LRRK2 toxicity. Human Molecular Genetics, 22(2):328–344.

Authors

Vysakh Visweswaran
Roshni PR
roshnipr@aims.amrita.edu (Primary Contact)
Vysakh Visweswaran, & Roshni PR. (2021). Role of Enzymes in Causing Neurological Disorders. International Journal of Research in Pharmaceutical Sciences, 12(1), 466–476. Retrieved from https://ijrps.com/home/article/view/269

Article Details

No Related Submission Found