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            Abstract

            
               
Diseases of the nervous system are always associated with poor prognosis and limited treatment options. The fragile nature
                  of the neurons and their inability to replicate means that neurological disorders are associated with a permanent disability.
                  Pharmacotherapy of neurological diseases requires understanding the molecular mechanisms involved in the disease pathology.
                  In most of the cases a faulty cellular biochemical pathway is involved, resulting from a defective enzyme. This article focusses
                  on role of enzymes in various neurological disorders. To review pertinent literature and summarise the role of enzymes in
                  the underlying pathology of various neurological disorders. A comprehensive literature search was conducted using PubMed,
                  SCOPUS, J-GATE and Google Scholar and relevant papers were collected using the keywords enzymes, Alzheimer's disease, redox,
                  thiamine, depression, neurotransmitters, epileptogenesis. The literature review highlighted the role of enzymes in major neurological
                  disorders and their potential to be used as drug targets and biomarkers. Identifying defective enzymes gives us new molecular
                  targets to focus on for developing more effective pharmacotherapeutic options. They can be also considered as potential biomarkers.
                  An abnormal enzyme is most often a direct result of an underlying genetic abnormality. Identifying and screening for these
                  genetic abnormalities can be used in early identification and prevention of disease in individuals who have a genetic predisposition.
                  The modern advances in genetic engineering shows a lot of promise in correcting these abnormalities and development of revolutionary
                  cures although ethical concerns remain.  
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               Introduction

            Enzymes are very important protein molecules which are responsible for catalysing almost all reactions in the human body.
               No biochemical pathway in the human body is complete without enzymes. They are very efficient biocatalysts which ensure all
               metabolic and biochemical pathways in the human body operate efficiently and smoothly. Since enzymes are crucial in all pathways
               of the body any defects in their function can lead to disorders. Most of these disorders are of genetic origin since enzymes
               are products of gene expression. Enzymes are also used as markers for various diseases. From a diagnostic point of view increase
               or decrease in certain enzyme levels can indicate a disease condition. The focus of this article is on the role of enzymes
               in causing neurological disorders.
            

            A number of enzymes have been isolated from the cerebrospinal fluid and brain tissues. Studies indicate that these enzymes
               have a good association with various neurological disorders. Enzymes play a protective as well as detrimental role in various
               neurological diseases. Some enzymes are involved in a protective function while aberrations in enzyme expression or protein
               structure are known to worsen the disease. An example of the protective function is peroredoxin, an enzyme involved in keeping
               the highly reactive peroxide levels under control. The enzyme comes under sulfhydryl dependent peroxidases. They reduce organic
               peroxides and hydrogen peroxides thereby providing protection from neurological diseases under oxidative and inflammatory
               stress. The significance of protective enzymes in diseases is that their decrease or dysfunction can lead to neurological
               disorders. Apart from protective function many enzymes are known to play a detrimental role in a variety of diseases like
               brain tumours, Alzheimer’s diseases, Parkinsonism etc. 

            
               Enzymes and Their Involvement in Various Neurological Disorders
               
            

            
               Role of enzymes in Alzheimer’s disease
               
            

            Alzheimer’s disease is a condition which affects memory and cognition in patients. It is a neurodegenerative condition in
               which the patients eventually experience memory deficits, impaired cognition and poor functional status. The underlying pathology
               in Alzheimer’s disease is thought to be the development of Amyloid plaques and Neurofibrillary tangles (NFT). These lesions
               occur more prominently in the temporal lobe structures and corticomedullary regions of the brain. The amyloid plaque formation
               is explained by the amyloid cascade hypothesis. As per this hypothesis, amyloid plaques occur as a result of the accumulation
               of an abnormal protein called Aβ. Aβ is a 36-43 amino acid protein produced from the processing of a much larger protein called
               Amyloid precursor protein (APP). The imbalance between the production and clearance of Aβ is thought to result in Aβ accumulation.
               β secretase is a key enzyme involved in Aβ production. It cleaves the amyloid precursor protein (APP) to β Amyloid whose deposition
               may lead to Alzheimer’s disease. β secretase specifically known as BACE1 is elevated in sporadic Alzheimer’s disease indicating
               the involvement of this enzyme in the condition  (Chen et al., 2012). The elevated enzyme produces Aβ at a higher rate far exceeding its normal clearance mechanism resulting in Aβ accumulation
               and plaque formation. Another enzyme that works along with β secretase in cleaving APP is  
                  
                     γ
                   secretase which also play a role in the disease pathology. 
            

            Apart from β Amyloid production this enzyme can also cause Alzheimer’s disease by another mechanism. It is thought to interfere
               with the cAMP dependent signalling pathway involved in long term memory. cAMP response element binding protein(CREB) phosphorylation
               is a crucial step in the pathway which result in the transcription of CREB target genes  (Lonze & Ginty, 2002). This is necessary for maintaining the plasticity of synapses essential for long term memory. The CREB activation is done
               by cAMP dependent protein kinase A (PKA) which is in turn activated by cAMP. The BACE1 interacts the transmembrane domain
               of adenylyl cyclase which result in reduced cAMP production. This result in PKA inactivation leading to reduced phosphorylation
               of CREB leading to the cognitive and memory defects in Alzheimer’s disease  (Chen et al., 2012).  Both the enzymes β and   
                  
                     γ
                   secretase can be targeted to develop novel therapeutic agents to treat alzheimers disease. 
            

            Current medications in treating the symptoms of Alzheimer’s disease include targeting the cholinergic pathway to increase
               the concentration of acetylcholine in the synaptic cleft. It was observed that the loss of cholinergic neurons leading to
               a cholinergic deficit is one of the major causes of disease symptoms. The loss of cholinergic activity is directly proportional
               to Alzheimer’s disease severity. The current medications in Alzheimer’s treatment namely donepezil, galantamine and rivastigimine
               inhibit the enzyme acetylcholinesterase. The enzyme is involved in degrading the acetylcholine to inactive products. This
               enzyme is strategically placed in the synaptic cleft to degrade the excess acetylcholine at the synaptic cleft. Inhibition
               of the acetylcholine esterase transiently elevates the acetylcholine levels alleviating the symptoms in the early stages of
               the disease. 
            

            Cyclin dependent kinase 5 (CDK5) is a proline directed serine threonine kinase that comes under the family of cyclin dependent
               kinases  (Dhavan & Tsai, 2001; Liu, Zhai, Zhao, Wang, & Xu, 2017). CDK5 unlike other members of the CDK family is not directly involved in the regulation of cell cycle. The kinase activity
               of CDK5 is active only when the enzyme associates with either of its two activator proteins p35 or p39  (Dhavan et al., 2001; Liu et al., 2017). CD5/p35 complex is the predominant active form under healthy conditions. The CDK5 enzyme is abundantly found in post mitotic
               cells, especially the neurons  (Liu et al., 2017). Restricted expression of the CDK5 activators p35 and p39 is the reason for localisation of the CDK5 activity to the post
               mitotic cells, predominantly to the central nervous system  (Liu et al., 2016). In healthy neurons the activated CDK5 performs various important functions like neuronal migration and differentiation,
               maintenance of synaptic plasticity, memory consolidation, gliogenesis, development of the cerebellum and cortex layer formation
               (Liu et al., 2016). The tight regulation of CDK5 is disrupted in many pathological conditions especially when the neurons undergo various stresses.
               Neurotoxic insults cause an excess of calcium influx into the cells resulting in the activation of a group of proteases called
               calpains. Calpains cleave the protein p35 into two components p10 and p25. p25 has a longer half-life that p35 and has the
               ability to pathologically activate CDK5 into a hyperactive kinase for a longer period of time  (Liu et al., 2017). The resultant hyperactive CDK5/p25complex hyper phosphorylates various substrates resulting in neuropathology. In Alzheimer's
               disease, the hyperactivity of CDK5 is closely linked to the formation of amyloid plaques and neurofibrillary tangles. Studies
               in transgenic mice showed that aberrant CDK5 phosphorylates the Thr668 amino acid residue of APP. This results in increased
               processing of APP to Aβ and its deposition as plaques  (Liu et al., 2016). Neurofibrillary tangle formation is also a result of hyperphosphorylation of substrates by the CDK5. The tau protein contains
               high amount of serine threonine residues which are excellent sites for phosphorylation by the CDK5/p25 complex  (Liu et al., 2016). Tau is a microtubule binding protein involved in the proper assembly of microtubules and in connecting the microtubules
               with other cytoskeletal structures. Hyperphosphorylation of tau at the serine threonine residues by the CDK5/p25complex results
               in formation of paired helical filaments (PHF) which in turn is a component of the neurofibrillary tangles. The loss of function
               of tau protein results in synaptic loss and cell death. Apart from being a direct part of Alzheimer’s disease pathology CDK5/p25complex
               also damages the central nervous system by causing mitochondrial dysfunction, cell cycle re-entry, cell apoptosis and synaptic
               dysfunction  (Liu et al., 2016). 
            

            Glycogen synthase kinase 3 (GSK3) is another serine threonine kinase which has been implicated in the pathogenesis of Alzheimer’s
               disease. GSK3 is named as such due to its ability to phosphorylate and inactivate glycogen synthase, the enzyme responsible
               for storage of glucose as glycogen. Two forms of GSK3 has been identified, GSK3α and GSK3β coded by gsk3α and gsk3β genes
               respectively. Both of these genes are located on different chromosomes. GSK3 is involved in both Aβ and neurofibrillary tangle
               formation. GSK3 is known to modulate Aβ formation by interaction with the protein prensilin. Prensilin is produced by the
               genes PSEN1 and PSEN2 and has a major role in  
                  
                     γ
                   secretase activity. GSK3 interacts with PSEN1 thereby modifying its localisation and function, leading to senile plaque formation
               (Avila, Wandosell, & Hernández, 2010). GSK3 also phosphorylates tau at the serine threonine residues leading to PHF formation, resulting in neurofibrillary tangles.
               GSK3 requires preactivation of its substrates by other kinases for efficient phosphorylation. This preactivation is facilitated
               by the kinases CDK5, Protein kinase C (pkC), Protein Kinase A (pkA), casein kinase 1 (CK1) and PAR1. This links GSK3 mediated
               tau hyperphosphorylation with other kinases in the neurons. GSK3 has been studied as a potential drug target for treatment
               of Alzheimer’s disease. Lithium has been shown to inhibit GSK3 in both in vitro and in mice models of the disease  (Alam & Sharma, 2019). The models have shown a decline in senile plaque as well as neurofibrillary tangle formation due to the enzyme inhibition
               (Hampel et al., 2019). But the use of lithium as a GS3 inhibitor is limited by the ability of GSK3 to inhibit other kinases and increasing the
               potential for toxicities  (Avila et al., 2010). NP12, a thiazolidinediaone has been studied as a GS3 inhibitor and was observed check the plaque formation and tau pathology
               in transgenic mice models of Alzheimer’s disease  (Serenó et al., 2009). GS3 inhibition is a promising path to develop a novel treatment strategy for Alzheimer’s disease.
            

            Microtubule affinity regulating kinases (MARK) are a group of enzymes under the calcium calmodulin dependent protein kinase
               family involved in the tau pathology of Alzheimer’s disease. Physiologically these enzymes are involved in regulating the
               crucial microtubule dynamics necessary for the proper functioning of cells. In the central nervous system, they play important
               roles such as maintenance of synaptic plasticity, axonal growth, regulation of cell cycle and also in intracellular signal
               transduction  (Annadurai, Agrawal, Džubák, Hajdúch, & Das, 2017). Four MARK enzymes have been isolated in humans, namely MARK1, MARK2, MARK3 and MARK4  (Annadurai et al., 2017). The ability of MARK enzymes to phosphorylate tau protein at the Ser262 site on the microtubule binding domain is the reason
               for tau pathology associated with it  (Annadurai et al., 2017). Phosphorylation of the Ser262 makes the tau protein susceptible for further phosphorylation by other kinases such as CDK5,
               GSK3 and MAPK, resulting in further hyperphosphorylation of tau and neurofibrillary tangle formation  (Annadurai et al., 2017). The kinase activity of MARK is activated by other upstream kinases namely MARK kinase (MARKK) and Liver Serine/Threonine
               kinase B1 (LKB1). The activation happens by the phosphorylation of MARK at Thr208 residue by these upstream kinases  (Annadurai et al., 2017). MARK 2 and 4 have been highly implicated with the pathogenesis of Alzheimer’s disease  (Annadurai et al., 2017). Direct inhibition of MARK enzymes as a target for treating Alzheimer’s disease have been investigated with Drosophila models
               as well as animal models and showed positive results  (Annadurai et al., 2017). Indirect inhibition of MARK enzymes by inhibiting the upstream kinases were also studied. Although MARK enzyme activity
               was reduced by inhibiting the upstream kinases, deleterious effects were also observed  (Ozcan, Battaglia, Young, & Suzuki, 2015).
            

            Catecholamine-O-methyl transferase (COMT) is an important enzyme involved in the metabolism of catecholamines. Due to its
               participation in dopamine degradation, the enzyme is also involved in cognitive functions. The enzyme is coded by the COMT
               gene located on chromosome 22  (Martínez et al., 2009). A single nucleotide polymorphism (SNP) of the gene rs4680 SNP; G>A is shown to be a non-independent risk factor in Alzheimer’s
               disease  (Alam et al., 2019). The polymorphism is of pathological significance when it is expressed in patients with Apolipoprotein ε4 (APOE ε4) allele
               (Lanni et al., 2012). The G allele which results in a valine substitution instead of methionine at codon 158 is associated with higher enzyme
               activity and greater cognitive decline when co-expressed with APOE ε4. Hence rs4680 SNP; G>A polymorphism along with the presence
               of APOE ε4 can be used as a biomarker for predicting cognitive decline later in life  (Lanni et al., 2012). However rs4680 SNP; G>A polymorphism is not an independent predictor of cognitive decline as statistical significance could
               not be attained when the variable was assessed independently in longitudinal studies  (Lanni et al., 2012). 
            

            Phospholipase A2 (PLA2) is an enzyme responsible for hydrolysis of phospholipids, specifically at the sn2 ester bond  (Gentile et al., 2012). Physiologically they perform important tasks like signal transduction, eicosanoid synthesis, cell differentiation, proliferation
               and membrane trafficking  (Gentile et al., 2012). In humans 25 different PLA2 isoforms have been identified, of which larger cytosolic calcium dependent PLA2 (cPLA2) is
               associated with the inflammatory processes involved in Alzheimer’s disease  (Alam et al., 2019; Gentile et al., 2012). cPLA2 is involved in cleaving membrane phospholipids into arachidonic acid, a precursor of prostaglandins necessary for
               causing inflammation  (Gentile et al., 2012). cPLA2 is extensively located in the hippocampus, substantia nigra (SG), caudate nuclei, corpus callosum and subthalamic
               nucleus and is responsible for neuroinflammation and maintenance of membrane plasticity  (Gentile et al., 2012). cPLA2 is activated by the increase in intracellular calcium concentration as well as phosphorylation by mitogen activated
               protein kinase (MAPK). Aβ peptide is found to have the ability to alter the intracellular calcium concentration, resulting
               in cPLA2 activation leading to arachidonic acid production and neuroinflammation  (Gentile et al., 2012). The arachidonic acid is also susceptible to lipid peroxidation by NADPH oxidase, causing oxidative stress, further exacerbating
               the damage  (Gentile et al., 2012). Several PLA2 inhibitors such as natural extracts from the plant Withania somnifera are being studied as potential strategies
               for blocking the inflammatory processes  (Alam et al., 2019; Gentile et al., 2012). Synthetic molecules such as arachidonyl trifluoromethyl ketone (AACOCF3), bromoenol lactone also show promising PLA2 inhibition
               and reduced inflammation  (Gentile et al., 2012). 
            

            Tissue transaminase (tTG) an enzyme involved in protein cross linking has been found to play a role in the process of Aβ and
               NFT formation. The main function of this enzyme is protein cross linking through the formation of ε-(γ-glutamyl)lysine isopeptide
               bonds, (γ-glutamyl)polyamine bonds and deamidation of protein substrates. The enzyme catalyses both intra and inter-protein
               cross linking. In Alzheimer’s disease the enzyme is involved in cross linking of both Aβ monomers to oligomers as well as
               cross linking of tau proteins to form NFT. tTG can cross link both phosphorylated as well as unphosphorylated tau. Also the
               enzyme polyaminates the tau protein making it resistant to degradation by calpases thereby reducing tau clearance  (Wilhelmus, Jager, Bakker, & Drukarch, 2014). Autopsies of Alzheimer’s disease showed increased expression of tTG in their brain cortex compared to controls  (Wilhelmus et al., 2014). Also increased levels of ε-(γ-glutamyl) lysine isopeptides were detected in the CSF suggesting increased activity of tTG
               in Alzheimer’s disease patients  (Wilhelmus et al., 2014). Therefore tTG can be explored as a potential biomarker and drug target in Alzheimer’s disease  (Alam et al., 2019). 
            

            Monoamine oxidases (MAO) are enzymes located in the outer membrane of mitochondria responsible for oxidation of monoamine
               neurotransmitters such as dopamine, noradrenaline and serotonin. This oxidation produces hydrogen peroxide as a byproduct
               which is converted into water by free radical scavenging mechanisms. But overexpression of this enzyme results in increased
               production of free radicals, overwhelming the normal free radical scavenging mechanisms. The excess free radicals cause lipid
               peroxidation and neurodegeneration. MAO- B enzyme is overexpressed in patients with Alzheimer’s disease  (Schedin-Weiss et al., 2017). This has been observed on post mortem studies of Alzheimer’s disease brains  (Schedin-Weiss et al., 2017). The enzyme is also found to be interlinked with γ secretase function involved in Aβ formation.  (Schedin-Weiss et al., 2017). Taking into consideration the role of MAO-B in free radical induced neuronal damage, current MAO-B inhibitors can be studied
               as a potential treatment option in Alzheimer's disease. 
            

            Sirtuins are a group of enzymes responsible for deacetylation and ADP ribosylation of various protein substrates  (Alam et al., 2019). Sirtuins performs various essential roles in the survival of cells such as cell cycle control, chromatin regulation, mitochondrial
               function and DNA repair  (Cacabelos et al., 2019). There are 7 sirtuins (SIRT 1-7) identified in humans and they are all dependent on Nicotinaminde adenine dinucleotide (NAD+) for catalysing reactions  (Cacabelos et al., 2019). Of all the SIRT enzymes, SIRT 1 is the most extensively studied enzyme in Alzheimer’s disease pathology. SIRT 1 up regulates
               the enzyme ADAM10, via the activation of retinoic acid receptor beta (RARB). (Cacabelos et al., 2019). ADAM10 is an alpha secretase necessary for converting APP to soluble APPα peptides thereby preventing Aβ plaque formation
               (Cacabelos et al., 2019). SIRT 1 also reduces NF-κB signalling thereby keeping inflammatory processes responsible for neuronal damage in check  (Cacabelos et al., 2019). Pharmacological up regulation of SIRT1 could prove beneficial in treating Alzheimer’s disease  (Alam et al., 2019; Dai, Sinclair, Ellis, & Steegborn, 2018). Other SIRT enzymes namely SIRT 2 and 3 were also found to be up regulated in Alzheimer’s disease and could be explored
               as biomarkers through future studies. 
            

            
               Thiamine Dependent Enzymes and Their Role in Neurological Disorders
               
            

            The water soluble vitamin thiamine plays an important role in the function of many enzymes. Its deficiency has shown a good
               correlation with several neurological diseases and manifestations. In the brain, thiamine pyrophosphokinase converts thiamine
               to thiamine diphosphate (TDP) which serves as a cofactor for enzymes involved in glucose metabolisms such as α keto glutarate
               dehydrogenase, pyruvate dehydrogenase and transketolase enzymes. Of these α keto glutarate dehydrogenase is a part of the
               citric acid cycle through which oxidation of acetyl-coA to produce energy takes place. α keto glutarate dehydrogenase is a
               rate limiting enzyme of this pathway and any irregularities in the function of this enzyme can have significant ramifications
               in cellular energy metabolism. A reduction in the levels of thiamine will cause a reduction in the TDP levels. This would
               lead to a reduction in the activitiy of TDP dependendent enzymes. Decrease in the activity of α keto glutarate dehydrogenase
               results in neuronal cell death which can lead to pathological manifestations like Wernicke Korsakoff syndrome characterised
               by loss of neurons in the thalamus, cerebellum and midbrain. The disease will show a variety of symptoms including mental
               impairment, confusion, ataxia and rapid involuntary movement of the eyes. Acute thiamine deficiency affects mitochondrial
               function resulting in oxidative stress in certain areas of the brain. Oxidative stress initially starts in areas of high metabolic
               activity. α keto glutarate dehydrogenase is also shown to play a role in Alzheimer's disease. β Amyloid peptide and oxidative
               stress was shown to reduce to reduce the activity of α keto glutarate dehydrogenase causing death of neurons. Ethanol is shown
               to inhibit the thiamine pyrophosphokinase which could precipitate neuronal cell death in alcoholics. Also, in other neurodegenerative
               disorders like progressive cerebral palsy and Parkinson’s disease reduced activity of α keto glutarate dehydrogenase has been
               observed. 
            

            
               Role of DNA Repair Enzymes in Neurological Disorders
               
            

            Uncorrected DNA damage can result in various neurological manifestations due to the long life and high transcriptional activity
               of neurons. These damages can occur due to reactive oxygen species, errors in replication and transcription or due to external
               factors like radiation. Normally there are DNA repair mechanisms in place which will repair the damage and prevent any pathological
               manifestations. Single stranded DNA breaks (SSB) are a frequently observed DNA damage and can result from the action of Reactive
               oxygen species. If uncorrected it can cause neurodegeneration. SSB are repaired using XRCC1 based single strand break repair
               (SSBR) /base excision repair (BER) pathway. Unrepaired double stranded breaks (DSB) due to defective double strand break repair
               (DSBR) can also lead to neurological problems. 
            

            Polynucleotide kinase phosphate (PKNP) is an important enzyme that participates in both DSBR and SSBR pathway. In DNA repair
               the PKNP uses its 3’ Phosphatase and 5’ kinase activity to make the ends of the DNA breaks compatible for ligation.  Various mutations in this enzyme result in neurological disorders including microencephaly with seizures, neurodegeneration,
               occulomotor apraxia and dystonia due to defective DNA repair. Microencephaly occur congenitally. Other manifestations like
               cerebellar ataxia is a result of neuronal degeneration and can occur after birth. 
            

            Ataxia telangiectasia mutated (ATM) is a serine threonine kinase activated in response to DSB  (Choy & Watters, 2018). It is a member of the phosphatidylinositol-3 kinase-like protein kinase (PIKK) family. Defects in the ATM gene located
               on the long arm of chromosome 11 is responsible for the rare autosomal recessive disease ataxia telangiectasia  (Choy et al., 2018). Clinical presentation of this disease is complex and varies from individual to individual. The major distinguishing features
               are cerebellar degeneration and ataxia, immunodeficiency, telangiectasia, radiation sensitivity and increased risk of cancers
               of lymphoid origin. The kinase activity of ATM is involved in various crucial processes like DNA repair, cell cycle regulation,
               response to oxidative stress, autophagy, apoptosis and mitochondrial function. Defects in the enzyme causes impairment of
               these crucial processes, especially DNA repair and cell cycle regulation resulting in reduced cell proliferation and cell
               death. This is the reason for neurodegeneration. Studies in mice with knocked out ATM gene showed neurodegenerative changes
               in the cerebellum  (Choy et al., 2018). Also, markers of increased oxidative stress such as lipid peroxidation products and reduced levels of antioxidants were
               observed in AT patients  (Choy et al., 2018).
            

            
               Role of Enzymes in Epilepsy
               
            

            A number of enzyme related aberrations are known to be a factor in causing myoclonic epilepsies and seizures. Diseases like
               Tay Sachs disease, Sandhoff disease, GM2 Gangliosidosis are some of the causes of progressive myoclonic epilepsy. Also, metabolic
               disorders like hypoglycaemia, mitochondrial disorders, biotin deficiency are also known to cause myoclonic epilepsies. 
            

            Accumulation of gangliosides especially in the lysosomes are the cause of GM2 Gangliosidosis. Defects in the enzymes involved
               in the catabolism of gangliosides causes the condition. β hexosaminidase A and B coded by genes HEXA and HEXB are two enzymes
               involved in this catabolism, whose defects can lead to accumulation of gangliosides. Tay Sachs disease is a result of mutations
               in the HEXA gene. Defects in the HEXB gene can result in Sandhoff disease. Also a very rare kind of gangliosidosis known as
               AB variant have been identified due to mutation a protein known as GM2A activator protein  (Kochumon et al., 2017).
            

            Kinases such as CDK5, Casein kinase 2 (CK2), TrKB kinase, Adenosine kinase (ADK) and kinases involved in the m-TOR pathway
               were found to be aberrantly expressed in animal models of epilepsy  (Dixit, Tripathi, Chandra, & Banerjee, 2016). 
            

            From an epileptogenic point of view CDK5 is involved in synaptic transmission and synaptic plasticity as well as maintenance
               of neuronal excitability. CDK5 keeps neurotransmitter release in check and its inhibition has resulted in neurotransmitter
               release and unmasking of silent synapses  (Dixit, Banerjee, Tripathi, Sarkar, & Chandra, 2017). Hence this enzyme is crucial for maintaining the balance between inhibitory and excitatory neurotransmission. Deregulation
               of CDK5 could lead to an excess neurotransmitter release and hyper excitability of neurons leading to epileptogenesis  (Dixit et al., 2017). CDK5 is also thought to cause imbalances in dopamine homeostasis under conditions of elevated glutamate leading to excitotoxicity.
               CDK5 is found to both inhibit and induce epileptogenesis  (Dixit et al., 2017). Under normal physiological conditions CDK5 inhibits epileptiform activity  (Dixit et al., 2017). But under stressful conditions, due to the high influx of calcium into the cytosol, CDK5 plays the role of inducer of epileptogenesis
               (Dixit et al., 2017). This is due to the glutamine mediated calcium influx via activation of NMDA and AMPA receptor under conditions of stress
               leading to aberrations in the excitatory feedback circuit  (Dixit et al., 2017). In the case of intractable epilepsy CDK5 was found to be aberrantly expressed at the transcriptome level  (Dixit et al., 2017). Hence CDK5 has the potential to be used as a biomarker for epilepsy, especially in drug resistant cases  (Dixit et al., 2017). 
            

            Casein kinase 2 (CK2) is a serine threonine kinase involved in regulation of circadian rhythm, cell cycle control and DNA
               repair. It has also been shown to regulate the slow after hyperpolarising potential, a major mechanism for inhibition of neurotransmission
               (Dixit et al., 2016). Chronic inhibiton of CK2 in rat pilocarpine model showed augmentation of slow hyperpolarising potential. Hence CK2 is a
               feasible target in the treatment of drug resistant epilepsy  (Dixit et al., 2016).
            

            The purine nucleotide adenosine is observed to act as a strong endogenous anticonvulsant and has the ability to cease seizure
               activity  (Weltha, Reemmer, & Boison, 2019). Levels of adenosine in the brain is regulated by astrocytes. Adenosine is released into the synaptic cleft by astrocytes
               in the form of Adenosine triphosphate (ATP). The ATP is then cleaved by various ectonucleotidases to generate adenosine which
               in turn exerts anticonvulsant activity by binding to adenosine receptors  (Boison, 2016). Adenosine kinase (ADK) is the enzyme responsible for the inactivation of adenosine in the synaptic cleft by converting
               it to adenosine monophosphate (AMP)  (Weltha et al., 2019). Since adenosine has no natural reuptake mechanisms, ADK takes up the role of preventing excess adenosine from building
               up. Overexpression of ADK is linked to the pathogenesis of epilepsy by reducing the amount of adenosine in the synaptic cleft
               (Weltha et al., 2019). In astrogiosis, overexpression of ADK is the underlying pathological mechanism behind epileptogenesis  (Dixit et al., 2016). This has been observed in animal models  (Dixit et al., 2016). Also studies in animal models have shown reduction in seizures upon inhibition of ADK as well as adenosine receptors  (Boison, 2016). Hence adenosine kinase can be used as a future therapeutic target as well as biomarker in epilepsy  (Dixit et al., 2016). Adenosine supplementation is also a feasible option in combating epilepsy as a result of astrogliosis  (Boison, 2010). 
            

            Tropomyosin related kinase B (TrkB) the receptor of BDNF is known to play a role in the development of epilepsy following
               status epilepticus (SE) and traumatic brain injury  (Lin, Harward, Huang, & McNamara, 2020). Bindng of BDNF to its receptor Trkb promotes neuronal differentiation, neurite outgrowth and survival. Neurite outgrowth
               and formation of new neural connections in response to SE and traumatic brain injury is one of the reasons for development
               of chronic recurrent seizures  (Lin et al., 2020). TrkB is also known as receptor tyrosine kinase B and is a member of the tyrosine kinase family of receptors. TrKB has been
               specifically implicated in the pathogenesis of temporal lobe epilepsies (TLE) based on studies done on mice models  (Lin et al., 2020). Transient inhibition of TrkB in animal models prevented TLE after SE  (Dixit et al., 2016). Hence TrkB is a potential target for therapeutic intervention, specifically in drug resistant TLE  (Lin et al., 2020). 
            

            Traumatic brain injury and SE also causes epileptic changes by the activation of Janus kinase (JAK) - Signal transducer and
               activator of transcription proteins (STAT) pathway  (Clossen & Reddy, 2017). JAK-STAT activation is found to de regulate inhibitory neurotransmission and promote hyper excitability  (Clossen et al., 2017). This happens through the loss of Gamma amino butyric acid A receptors (GABAAR)  (Clossen et al., 2017). Phosphorylation of the STAT3 molecule in traumatic brain injury leads to the loss of α1 subunit of GABAAR, leading to hyper
               excitability and seizures  (Clossen et al., 2017). BDNF also plays a role in JAK-STAT activation and modulation of this process  (Clossen et al., 2017). Inhibition of the STAT3 protein by an inhibitor WP1066 in animal models leads to an increase in GABAAR α1 subunit  (Clossen et al., 2017). Further studies in JAK-STAT inhibition could pave way for the development of novel strategies to reverse epileptiform changes.
               
            

            Hyperactivation of the PI3K-AKT-mTOR pathway has been implicated in the development of structural lesions that could lead
               to epilepsy. The pathway has been associated with hypertrophic disorders such as focal cortical dysplasia, tuberous sclerosis
               complex (TSC) and Cowden disease. The pathway is a promoter of cell growth, differentiation and anabolism and inhibition of
               various components in the pathway could have therapeutic benefit. mTOR (mammalian target of rapamycin) has been extensively
               studied as a therapeutic target in epilepsy. Inhibition of mTOR via rapamycin administration reduced the progression of hypertrophic
               lesions in animal models of the disease  (Dixit et al., 2016). The two main upstream enzymes in the pathway namely the phosphatidylinositol-3-kinase (PI3K) and Protein kinase B (AKT)
               could also be potential targets in blocking this process. PI3K is activated by the receptor tyrosine kinase in response to
               various growth signals, which in turn would activate AKT and mTOR. Combined inhibition of PI3K and AKT inhibit mTOR signalling
               and thus reduced seizure activity in rat hippocampal model of post traumatic epilepsy  (Berdichevsky et al., 2013). Post traumatic epileptic changes could be decreased or alleviated by blocking the mTOR pathway  (Berdichevsky et al., 2013). The short and long term memory deficits due to seizure is also attributed to the overexpression of PI3K-AKT-mTOR pathway.
               In rat models, it was observed that Wortmannin, a PI3K inhibitor could offer protection against seizure induced changes and
               memory deficits  (Carter et al., 2017).
            

            
               Enzymes in the Pathogenesis of Parkinson’s disease
               
            

            Reduced dopaminergic signalling in the Substantia nigra pars compacta (SN-PC) and nigrostriatal tract is the primary pathology
               in Parkinson’s disease. Due to the rapid inactivation of dopamine by enzymes involved in catecholamine metabolism dopamine
               has a very short half-life. Reduced dopaminergic signalling is the reason for characteristic symptoms of Parkinsonism namely,
               tremor, rigidity, bradykinesia and postural instability. Enzymes MAO and COMT are involved in the metabolism of dopamine into
               inactive products. Of the two isoenzyme forms of MAO, MAO-A is expressed primarily in the peripheral structures and MAO-B
               is located in the CNS. COMT and MAO convert dopamine into 3-methoxytyramine (3-MT) and 3,4-dihydroxyphenylacetaldehyde (DOPAL)
               respectively. Both these metabolites are further acted upon by various enzymes to form the inactive product homovanillic acid.
               Apart from administration of L-DOPA, inhibition of these enzymes are an indispensable part of current Parkinson disease pharmacotherapy.
               COMT inhibitors entacapone and tolcapone as well as MAO-B inhibitors seligiline and rasagiline as administered as adjuvant
               to levodopa to increase the half-life of dopamine. MAO-B inhibition is preferred over MAO-A inhibition due to less interference
               with the metabolism of peripheral amines. Dopamine is also hydroxylated into Noradrenaline by the enzyme Dopamine-β-hydroxylase
               which could also contribute to the reduction in dopamine half-life. 
            

            Dopaminergic neurons in the substantia nigra are in increased risk of oxidative stress from the free radical byproducts of
               catecholamine metabolism. Unchecked oxidative stress can cause neuronal cell death, resulting in reduced dopamine signalling
               leading to Parkinson disease. Overexpression of the enzyme Leucine rich repeat kinase 2 (LRRK2) has been identified as a key
               factor in causing oxidative stress  (Johnson, Wilson-Delfosse, Chen, & Mieyal, 2015). G2019S mutation increases the LRRK2 activity and causes excess free radical production thereby resulting oxidative stress
               to neurons  (Johnson et al., 2015). Several treatment strategies are being investigated to inhibit this enzyme and prevent neuronal damage. LRRK-IN-1 a compound
               with highly potent inhibitory activity of LRRK2 was found to be neuroprotective in cell cultures and C elegans model of parkinsonism
               (Yao et al., 2013). But LRRK-IN-1 does not cross the blood brain barrier hence does not have therapeutic value. But two new inhibitors GNE-0877
               and GNE-9605 which is blood brain barrier permeable and can make its way into clinical trials in the future  (Estrada, Chan, & Baker-Glenn, 2014). 

            Glutaredoxin (Grx1), a mammalian thioltransferase has also been identified to play a role in the pathogenesis of Parkinsons
               disease. The function of glutaredoxin is to deglutathionylate the cysteine residues of proteins causing them to regain their
               normal function and restore steady state functions  (Allen & Mieyal, 2012; Gravina & Mieyal, 1993). Evidence for the protective role of Grx1 was first suspected when mice treated with a Parkinson’s disease inducing compound
               1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was found to overexpress the Grx1 enzymes  (Kenchappa & Ravindranath, 2003). Also, female mice were less susceptible to the effects of MPTP due to the high levels of Grx1 in their brains compared
               to that of males  (Kenchappa, Diwakar, Annepu, & Ravindranath, 2004). Studies in the SH –SY5Y cells treated with the pro oxidant drug L-DOPA showed that cell death due to L-DOPA is a consequence
               of covalent bonding of L-DOPA to the Grx1 enzymes  (Sabens, Distler, & Mieyal, 2010). Postmortem studies of humans with Parkinson’s disease showed the diminution of the Grx1 enzyme compared to healthy humans.
               Dopaminergic neuronal cell death was found to be more severe in Grx1 deficient patients if they also have hyperfunctional
               LRRK1 mutations like G2019S. Currently treatment of Parkinson disease is focussed on increasing the dopamine levels in the
               brain. It does not treat the underlying cause and there is still no way to halt the disease progression. By targeting the
               LRRK1, Grx1 enzymes and other redox proteins, treatment strategies can be developed prevent the dopaminergic neuronal loss
               and halt the disease in its tracks.
            

            Role of Enzymes in Brain Malignancies 
            

            Tumours of the brain are always associated with poor prognosis and survival. Such tumors arise as a result of the uncontrolled
               proliferation of glial cells. Glioblastoma multiforme is a highly invasive grade 4 astrocytoma which is extremely difficult
               to treat and is associated with worse prognosis. The aggressive and invasive nature of the tumour means that even if fully
               treated the median survival is extended by just 2-3 months to 1 year. Surgical approach improves the symptoms but the disease
               will not be cured and the likelihood of recurrence is very high. Studies show that expression of the enzyme kallikrein 6 is
               associated with treatment resistance, aggressive tumor invasion and poor prognosis  (Drucker et al., 2013). Kallikrein 6 (KLK6) is a serine protease under the family of enzymes Kallikreins. Kallikreins are encoded by genes on the
               chromosome locus 19q. A study conducted by Drucker et al. showed kallirein 6 overexpression in astrocytoma tumour samples
               taken from patients  (Drucker et al., 2013). Further, the study also indicated a worse prognosis for patients who overexpressed the kallikrein 6 enzyme and cell line
               studies showed resistance to cytotoxic agents in KLK6 overexpressed cells 38. The mechanism of action of KLK 6 in tumour cell survival and treatment resistance is by the activation of the Protease activated
               receptor 1 (PAR1)  (Drucker et al., 2013). This was also confirmed by Druker et al. on cell lines  (Drucker et al., 2013). Cleavage of the extracellular domain of PAR1 by KLK6 or other KLKs reveals a tethered ligand. Intramolecular binding of
               this ligand result in cell signalling promoting tumour growth  (Adams et al., 2011). KLK6 being a protease is also thought to weaken the extracellular matrix facilitating tumour invasion. 

            A tumor in the brain is associated with ischaemia at its location which can further damage the nearby neurons through the
               development of oxidative stress. Ischaemic cell injury is thought to release iron from the cells which would further form
               an iron-ascorbate salt mixture causing lipid peroxidation and free radical formation. The hydrophilic free radicals cause
               local damage but some of the more lipophilic ones diffuse to distant sites spreading the damage. The damage can cause oedema
               and vascular compression in the brain tissue further worsening the situation. The body has a mechanism to prevent or to an
               extent reduce the ongoing damage through free radical scavenging mechanisms. A number of enzymes such as superoxide dismutase(
               SOD), Glutathione peroxidase (GPx), Gluthathione reductase (Grx) are involved in the free radical scavenging mechanism. Any
               deficiency of these enzymes compromises the ability to protect cells from oxidative stress. In the case of a tumour this situation
               is a factor in aggravating brain damage.
            

         

         
               Conclusion

            Enzymes are indeed the molecular machines that runs all the biochemical pathways of our body and keeps our cells alive. Enzymes
               are a product of gene expression and any aberration in genes coding for an enzyme can lead to defective enzymes, compromising
               the pathways and functions the enzyme normally performs. Hence genetics and enzymes are interlinked. Modern knowledge in genetics
               and genetic engineering are so advanced many of these genetic aberrations can be targeted to prevent and possibly cure diseases
               like Alzheimer’s disease, Parkinsonism, depression and various other psychiatric disorders. With the advent of gene editing
               technologies like CRISPR there is scope for early detection and prevention of individuals with genetic predisposition though
               ethical concerns remain. Enzymes itself can also be a target of treatment. Drugs can be developed to target the enzymes involved
               in the neurobiology of a disease. Enzymes are also of diagnostic value. Detection of defective enzymes is a way to identify
               people who are the risk of a disease and take preventive measures early on. In other words, enzymes involved in neuropathology
               of disorders can be used as biomarkers. Considering the significant role enzymes play in the neuropathology of various neurological
               disorders, understanding them is key to developing better treatment modalities and screening techniques for the same. 
            

            
               Funding Support
               
            

            The authors declare that they have no funding support for this study.

            
               Conflict of Interest
               
            

            The authors declare that there is no conflict of interest for this study.

         

      

      
         
               References

            
                  
                  
                     
                        1 
                              

                     

                     Chen, Y., Huang, X., Zhang, Y.-w., Rockenstein, E., Bu, G., Golde, T. E., Masliah, E. & Xu, H.,   (2012). Alzheimer's  -Secretase (BACE1) Regulates the cAMP/PKA/CREB Pathway Independently of  -Amyloid. Journal of Neuroscience, 32(33), 11390–11395. 10.1523/jneurosci.0757-12.2012

                  

                  
                     
                        2 
                              

                     

                     Lonze, B E & Ginty, D D,   (2002). Function and Regulation of CREB Family Transcription Factors in the Nervous System. Neuron, 35(4), 605–623.
                     

                  

                  
                     
                        3 
                              

                     

                     Dhavan, R & Tsai, L.-H,   (2001). A decade of CDK5. Nature Reviews Molecular Cell Biology, 2(10), 749–759.
                     

                  

                  
                     
                        4 
                              

                     

                     Liu, C, Zhai, X, Zhao, B, Wang, Y & Xu, Z,   (2017). Cyclin I-like (CCNI2) is a cyclin-dependent kinase 5 (CDK5) activator and is involved in cell cycle regulation.
                        Scientific Reports, 7(1), 40979.
                     

                  

                  
                     
                        5 
                              

                     

                     Liu, S.-L, Wang, C, Jiang, T, Tan, L, Xing, A & Yu, J.-T,   (2016). The Role of Cdk5 in Alzheimer’s Disease. Molecular Neurobiology, 53(7), 4328–4342.
                     

                  

                  
                     
                        6 
                              

                     

                     Avila, Jesús, Wandosell, Francisco & Hernández, Félix,   (2010). Role of glycogen synthase kinase-3 in Alzheimer’s disease pathogenesis and glycogen synthase kinase-3 inhibitors.
                        Expert Review of Neurotherapeutics.   Informa UK Limited. 10, 703–710 
                     

                  

                  
                     
                        7 
                              

                     

                     Alam, Jahangir & Sharma, Lalit,   (2019). Potential Enzymatic Targets in Alzheimer’s: A Comprehensive Review. Current Drug Targets, 20(3), 316–339. 10.2174/1389450119666180820104723

                  

                  
                     
                        8 
                              

                     

                     Hampel, Harald, Lista, Simone, Mango, Dalila, Nisticò, Robert, Perry, George, Avila, Jesus, Hernandez, Felix, Geerts, Hugo
                        & Vergallo, Andrea,   (2019). Lithium as a Treatment for Alzheimer’s Disease: The Systems Pharmacology Perspective. Journal of Alzheimer's Disease, 69(3), 615–629. 10.3233/jad-190197

                  

                  
                     
                        9 
                              

                     

                     Serenó, L., Coma, M., Rodríguez, M., Sánchez-Ferrer, P., Sánchez, M.B., Gich, I., Agulló, J.M., Pérez, M., Avila, J., Guardia-Laguarta,
                        C., Clarimón, J., Lleó, A. & Gómez-Isla, T.,   (2009). A novel GSK-3β inhibitor reduces Alzheimer's pathology and rescues neuronal loss in vivo. Neurobiology of Disease, 35(3), 359–367. 10.1016/j.nbd.2009.05.025

                  

                  
                     
                        10 
                              

                     

                     Annadurai, Narendran, Agrawal, Khushboo, Džubák, Petr, Hajdúch, Marián & Das, Viswanath,   (2017). Microtubule affinity-regulating kinases are potential druggable targets for Alzheimer’s disease. Cellular and Molecular Life Sciences, 74(22), 4159–4169. 10.1007/s00018-017-2574-1

                  

                  
                     
                        11 
                              

                     

                     Ozcan, Cevher, Battaglia, Emily, Young, Rebeccah & Suzuki, Gen,   (2015). LKB1 Knockout Mouse Develops Spontaneous Atrial Fibrillation and Provides Mechanistic Insights Into Human Disease
                        Process. Journal of the American Heart Association, 4(3), 1733. 10.1161/jaha.114.001733

                  

                  
                     
                        12 
                              

                     

                     Martínez, Manuel Fernández, Martín, Xabier Elcoroaristizabal, Alcelay, Luís Galdos, Flores, Jessica Castro, Valiente, Juan
                        María Uterga, Juanbeltz, Begoña Indakoetxea, Beldarraín, María Ángeles Gómez, López, Josefa Moraza, Gonzalez-Fernández, María
                        Carmen, Salazar, Ana Molano, Gandarias, Rocio Bereincua, Borda, Sandra Inglés, Marqués, Nuria Ortiz, Amillano, Miryam Barandiarán,
                        Zabaleta, María Carrasco & Pancorbo, Marian M de,   (2009). The COMT Val158 Met polymorphism as an associated risk factor for Alzheimer disease and mild cognitive impairment
                        in APOE 4 carriers. BMC Neuroscience, 10(1), 125. 10.1186/1471-2202-10-125

                  

                  
                     
                        13 
                              

                     

                     Lanni, Cristina, Garbin, Giulia, Lisa, Antonella, Biundo, Fabrizio, Ranzenigo, Alberto, Sinforiani, Elena, Cuzzoni, Giovanni,
                        Govoni, Stefano, Ranzani, Guglielmina Nadia & Racchi, Marco,   (2012). Influence of COMT Val158Met Polymorphism on Alzheimer's Disease and Mild Cognitive Impairment in Italian Patients.
                        Journal of Alzheimer's Disease, 32(4), 919–926. 10.3233/jad-2012-120358

                  

                  
                     
                        14 
                              

                     

                     Gentile, M. T., Reccia, M. G., Sorrentino, P. P., Vitale, E., Sorrentino, G., Puca, A. A. & Colucci-D’Amato, L.,   (2012). Role of Cytosolic Calcium-Dependent Phospholipase A2 in Alzheimer's Disease Pathogenesis. Molecular Neurobiology, 45(3), 596–604. 10.1007/s12035-012-8279-4

                  

                  
                     
                        15 
                              

                     

                     Wilhelmus, Micha M.M., de Jager, Mieke, Bakker, Erik N.T.P. & Drukarch, Benjamin,   (2014). Tissue Transglutaminase in Alzheimer's Disease: Involvement in Pathogenesis and its Potential as a Therapeutic Target.
                        Journal of Alzheimer's Disease, 42(s3), S289–S303. 10.3233/jad-132492

                  

                  
                     
                        16 
                              

                     

                     Schedin-Weiss, Sophia, Inoue, Mitsuhiro, Hromadkova, Lenka, Teranishi, Yasuhiro, Yamamoto, Natsuko Goto, Wiehager, Birgitta,
                        Bogdanovic, Nenad, Winblad, Bengt, Sandebring-Matton, Anna, Frykman, Susanne & Tjernberg, Lars O.,   (2017). Monoamine oxidase B is elevated in Alzheimer disease neurons, is associated with γ-secretase and regulates neuronal
                        amyloid β-peptide levels. Alzheimer's Research & Therapy, 9(1). 10.1186/s13195-017-0279-1

                  

                  
                     
                        17 
                              

                     

                     Cacabelos, R, Carril, J, Cacabelos, N, Kazantsev, A, Vostrov, A, Corzo, L, Cacabelos, P & Goldgaber, D,   (2019). Sirtuins in Alzheimer’s Disease: SIRT2-Related GenoPhenotypes and Implications for PharmacoEpiGenetics. International Journal of Molecular Sciences, 20(5), 1249.
                     

                  

                  
                     
                        18 
                              

                     

                     Dai, Han, Sinclair, David A., Ellis, James L. & Steegborn, Clemens,   (2018). Sirtuin activators and inhibitors: Promises, achievements, and challenges. Pharmacology & Therapeutics, 188, 140–154. 10.1016/j.pharmthera.2018.03.004

                  

                  
                     
                        19 
                              

                     

                     Choy, Kay Rui & Watters, Dianne J.,   (2018). Neurodegeneration in ataxia-telangiectasia: Multiple roles of ATM kinase in cellular homeostasis. Developmental Dynamics, 247(1), 33–46. 10.1002/dvdy.24522

                  

                  
                     
                        20 
                              

                     

                     Kochumon, Sheena, Yesodharan, Dhanya, Vinayan, KP, Radhakrishnan, Natasha, Sheth, Jayesh & Nampoothiri, Sheela,   (2017). GM2 activator protein deficiency, mimic of Tay-Sachs disease. International Journal of Epilepsy, 04(02), 184–187. 10.1016/j.ijep.2017.08.001

                  

                  
                     
                        21 
                              

                     

                     Dixit, Aparna Banerjee, Tripathi, Manjari, Chandra, P. Sarat & Banerjee, Jyotirmoy,   (2016). Molecular biomarkers in drug-resistant epilepsy: Facts & possibilities. International Journal of Surgery, 36, 483–491. 10.1016/j.ijsu.2015.08.029

                  

                  
                     
                        22 
                              

                     

                     Dixit, A B, Banerjee, J, Tripathi, M, Sarkar, C & Chandra, P S,   (2017). Synaptic roles of cyclin-dependent kinase 5 & its implications in epilepsy. The Indian journal of medical research, 145(2), 179–188.
                     

                  

                  
                     
                        23 
                              

                     

                     Weltha, Landen, Reemmer, Jesica & Boison, Detlev,   (2019). The role of adenosine in epilepsy. Brain Research Bulletin, 151, 46–54. 10.1016/j.brainresbull.2018.11.008

                  

                  
                     
                        24 
                              

                     

                     Boison, D,   (2016). Adenosinergic signaling in epilepsy. Neuropharmacology, 104, 131–139.
                     

                  

                  
                     
                        25 
                              

                     

                     Boison, Detlev,   (2010). Adenosine Dysfunction and Adenosine Kinase in Epileptogenesis. The Open Neuroscience Journal, 4(1), 93–101. 10.2174/1874082001004010093

                  

                  
                     
                        26 
                              

                     

                     Lin, Thiri W., Harward, Stephen C., Huang, Yang Zhong & McNamara, James O.,   (2020). Targeting BDNF/TrkB pathways for preventing or suppressing epilepsy. Neuropharmacology, 167(1), 107734. 10.1016/j.neuropharm.2019.107734

                  

                  
                     
                        27 
                              

                     

                     Clossen, Bryan L. & Reddy, Doodipala Samba,   (2017). Novel therapeutic approaches for disease-modification of epileptogenesis for curing epilepsy. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1863(6), 1519–1538. 10.1016/j.bbadis.2017.02.003

                  

                  
                     
                        28 
                              

                     

                     Berdichevsky, Y., Dryer, A. M., Saponjian, Y., Mahoney, M. M., Pimentel, C. A., Lucini, C. A., Usenovic, M. & Staley, K. J.,
                          (2013). PI3K-Akt Signaling Activates mTOR-Mediated Epileptogenesis in Organotypic Hippocampal Culture Model of Post-Traumatic
                        Epilepsy. Journal of Neuroscience, 33(21), 9056–9067. 10.1523/jneurosci.3870-12.2013

                  

                  
                     
                        29 
                              

                     

                     Carter, Angela N., Born, Heather A., Levine, Amber T., Dao, An T., Zhao, Amanda J., Lee, Wai L. & Anderson, Anne E.,   (2017). Wortmannin Attenuates Seizure-Induced Hyperactive PI3K/Akt/mTOR Signaling, Impaired Memory, and Spine Dysmorphology
                        in Rats. eNeuro, 4(3), 1–15. 10.1523/eneuro.0354-16.2017

                  

                  
                     
                        30 
                              

                     

                     Johnson, W M, Wilson-Delfosse, A L, Chen, S G & Mieyal, J J,   (2015). The roles of redox enzymes in Parkinson’s disease: Focus on glutaredoxin. Therapeutic targets for neurological diseases, 2(2).
                     

                  

                  
                     
                        31 
                              

                     

                     Yao, C., Johnson, W. M., Gao, Y., Wang, W., Zhang, J., Deak, M., Alessi, D. R., Zhu, X., Mieyal, J. J., Roder, H., Wilson-Delfosse,
                        A. L. & Chen, S. G.,   (2013). Kinase inhibitors arrest neurodegeneration in cell and C. elegans models of LRRK2 toxicity. Human Molecular Genetics, 22(2), 328–344. 10.1093/hmg/dds431

                  

                  
                     
                        32 
                              

                     

                     Estrada, Anthony A., Chan, Bryan K. & Baker-Glenn, Charles,   (2014). Discovery of Highly Potent, Selective, and Brain-Penetrant Aminopyrazole Leucine-Rich Repeat Kinase 2 (LRRK2) Small
                        Molecule Inhibitors. Journal of Medicinal Chemistry, 57(3), 921–936. 10.1021/jm401654j

                  

                  
                     
                        33 
                              

                     

                     Gravina, S A & Mieyal, J J,   (1993). Thioltransferase is a specific glutathionyl mixed-disulfide oxidoreductase. Biochemistry, 32(13), 3368–3376.
                     

                  

                  
                     
                        34 
                              

                     

                     Allen, Erin M.G. & Mieyal, John J.,   (2012). Protein-Thiol Oxidation and Cell Death: Regulatory Role of Glutaredoxins. Antioxidants & Redox Signaling, 17(12), 1748–1763. 10.1089/ars.2012.4644

                  

                  
                     
                        35 
                              

                     

                     Kenchappa, Rajappa S. & Ravindranath, Vijayalakshmi,   (2003). Glutaredoxin is essential for maintenance of brain mitochondrial complex I: studies with MPTP. The FASEB Journal, 17(6), 717–719. 10.1096/fj.02-0771fje

                  

                  
                     
                        36 
                              

                     

                     Kenchappa, R S, Diwakar, L, Annepu, J & Ravindranath, V,   (2004). Estrogen and neuroprotection: higher constitutive expression of glutaredoxin in female mice offers protection against
                        MPTP-mediated neurodegeneration. The FASEB Journal, 18(10), 1102–1104.
                     

                  

                  
                     
                        37 
                              

                     

                     Sabens, Elizabeth A., Distler, Anne M. & Mieyal, John J.,   (2010). Levodopa Deactivates Enzymes That Regulate Thiol−Disulfide Homeostasis and Promotes Neuronal Cell Death: Implications
                        for Therapy of Parkinson’s Disease. Biochemistry, 49(12), 2715–2724. 10.1021/bi9018658

                  

                  
                     
                        38 
                              

                     

                     Drucker, Kristen L., Paulsen, Alex R., Giannini, Caterina, Decker, Paul A., Blaber, Sachiko I., Blaber, Michael, Uhm, Joon
                        H., O'Neill, Brian P., Jenkins, Robert B. & Scarisbrick, Isobel A.,   (2013). Clinical significance and novel mechanism of action of kallikrein 6 in glioblastoma. Neuro-Oncology, 15(3), 305–318. 10.1093/neuonc/nos313

                  

                  
                     
                        39 
                              

                     

                     Adams, M N, Ramachandran, R, Yau, M.-K, Suen, J Y, Fairlie, D P, Hollenberg, M D & Hooper, J D,   (2011). Structure, function and pathophysiology of protease activated receptors. Pharmacology & Therapeutics, 130(3), 248–282.
                     

                  

               

            

         

      

      

   EPUB/nav.xhtml

    
      Role of Enzymes in Causing Neurological Disorders


      
        		
          Content
        


      


    
  

