Identification of a 2-aminothiazole framework using classical QSAR model targeting chloroquine-sensitive Plasmodium falciparum

Ravindran Karuppaiyan (1) , Anitha Gunavel (2) , Kasthuri Bai Solai (3) , Prabha Thangavelu (4)
(1) Department of Anaesthesiology, Government Medical College and Hospital, Pudukkottai-622004, Tamil Nadu, India, India ,
(2) Coimbatore Medical College, Coimbatore-641018, Tamil Nadu, India, India ,
(3) Department of Anaesthesiology, Government Medical College and Hospital, Pudukkottai-622004, Tamil Nadu, India, India ,
(4) Department of Pharmaceutical Chemistry, Nandha College of Pharmacy, Affiliated with The Tamil Nadu Dr. MGR Medical University-Chennai, Erode-638052, Tamil Nadu, India, India

Abstract

Chloroquine-sensitive Plasmodium falciparum is the most deadly form of human malaria. It is associated with a number of mutations in P. falciparum. Chloroquine-resistant transporter is a protein that serves as a transporter in the parasite's digesting vacuole membrane. In order to combat chloroquine-sensitive P. falciparum strains (NF54), this study employs QSAR modelling to examine possible structural alterations of 2-amino-thiazole derivatives. The traditional QSAR model was built using the PaDEL descriptor via QSARINS software. The model was found to have an internal cross-validation value of Q2loo = 0.7890 and an external validation parameter of RMSE ext = 0.6938. The predicted pIC50 values from the QSAR techniques for the case study chemicals were compared and found to be well fitted to the model and well predicted for the external set of compounds. The outcome demonstrates the value of using the suggested method in the creation of new medication candidates could fill the critical gap in scientific knowledge and open up novel possibilities for pharmaceutical development.

Full text article

Generated from XML file

References

Rastelli G, Pacchioni S, Sirawaraporn W, Sirawaraporn R, Parenti MD, Ferrari AM. Docking and database screening reveal new classes of Plasmodium falciparum dihydrofolate reductase inhibitors. Journal of Medicinal Chemistry. 2003 Jul 3;46(14):2834-45.

Hill DG. The biochemistry and physiology of Tetrahymena. Elsevier; 2012 Dec 2..

Guha, R., & Jurs, P. C. (2004). Development of QSAR models to predict and interpret the biological activity of artemisinin analogues. Journal of chemical information and computer sciences, 44(4), 1440-1449.

Katsila, T., Spyroulias, G. A., Patrinos, G. P., & Matsoukas, M. T. (2016). Computational approaches in target identification and drug discovery. Computational and structural biotechnology journal, 14, 177-184.

Cherkasov, A., Muratov, E. N., Fourches, D., Varnek, A., Baskin, I. I., Cronin, M., ... &Tropsha, A. (2014). QSAR modeling: where have you been? Where are you going to?. Journal of medicinal chemistry, 57(12), 4977-5010.

Prabha, T., Sivakumar, T. Design, Synthesis, and Docking of Sulfadiazine Schiff Base Scaffold for their Potential Claim as INHA Enoyl-(Acyl-Carrier-Protein) Reductase Inhibitors. Asian J Pharm Clin Res.,2018, 11(10), 233-237.

Macalino, S. J. Y., Billones, J. B., Organo, V. G., & Carrillo, M. C. O. (2020). In silico strategies in tuberculosis drug discovery. Molecules, 25(3), 665.

U., Safder, K., Nam, Kim, D., Shahlaei, M., and Yoo, C. (2018). Quantitative structure-property relationship (QSPR) models for predicting the physicochemical properties of polychlorinated biphenyls (PCBs) using deep belief network. Ecotoxicology and environmental safety, 162, 17-28.

Siddiqui N, Arya SK, Ahsan W, Azad B. Diverse biological activities of Thiazoles: A Retrospect. Int J Drug Dev Res. 2011 Oct;3(4):55-67.

Prabha T, Aishwaryah P, Manickavalli E, Chandru R, Arulbharathi G, Anu A, Sivakumar T. A Chalcone Annulated Pyrazoline Conjugates as a Potent Antimycobacterial Agents: Synthesis and in Silico Molecular Modeling Studies. Research Journal of Pharmacy and Technology. 2019;12(8):3857-65.

Ozdemir A, Turan-Zitouni G, Kaplancikli ZA, Revial G, Güven K. Synthesis and antimicrobial activity of 1-(4-aryl-2-thiazolyl)-3-(2-thienyl)-5-aryl-2-pyrazoline derivatives. Eur J Med Chem. 2007 Mar;42(3):403-9.

Cohen A, Verhaeghe P, Crozet MD, Hutter S, Rathelot P, Vanelle P, Azas N. Tandem synthesis and in vitro antiplasmodial evaluation of new naphtho [2, 1-d] thiazole derivatives. European journal of medicinal chemistry. 2012 Sep 1;55:315-24.

González Cabrera D, Douelle F, Feng TS, Nchinda AT, Younis Y, White KL, Wu Q, Ryan E, Burrows JN, Waterson D, Witty MJ. Novel orally active antimalarial thiazoles. Journal of medicinal chemistry. 2011 Nov 10;54(21):7713-9.

Gramatica, P., &Sangion, A. (2016). A historical excursus on the statistical validation parameters for QSAR models: a clarification concerning metrics and terminology. Journal of chemical information and modeling, 56(6), 1127-1131.

Roy, K., & Narayan Das, R. (2014). A review on principles, theory and practices of 2D-QSAR. Current drug metabolism, 15(4), 346-379.

Mulatsari E, Mumpuni E, Nurhidayati L, et al. Chemical molecular visualization training with chemsketch software for senior high school students. JurnalPengabdianMasyarakat 2021;2(1):102112.

Gramatica, P. (2007). Principles of QSAR models validation: internal and external. QSAR & combinatorial science, 26(5), 694-701.

Gramatica, P., Chirico, N., Papa, E., Cassani, S., &Kovarich, S. (2013). QSARINS: A new software for the development, analysis, and validation of QSAR MLR models.Journal of Computational Chemistry,34 (24), 21212132.

González Cabrera D, Douelle F, Feng TS, Nchinda AT, Younis Y, White KL, Wu Q, Ryan E, Burrows JN, Waterson D, Witty MJ. Novel orally active antimalarial thiazoles. Journal of medicinal chemistry. 2011 Nov 10;54(21):7713-9.

Mjambili F, Njoroge M, Naran K, De Kock C, Smith PJ, Mizrahi V, Warner D, Chibale K. Synthesis and biological evaluation of 2-aminothiazole derivatives as antimycobacterial and antiplasmodial agents. Bioorganic & medicinal chemistry letters. 2014 Jan 15;24(2):560-4.

Roy, K., & Mitra, I. (2011). On various metrics used for validation of predictive QSAR models with applications in virtual screening and focused library design. Combinatorial chemistry & high throughput screening, 14(6), 450-474.

Papa, E., Dearden, J. C., &Gramatica, P. (2007). Linear QSAR regression models for the prediction of bioconcentration factors by physicochemical properties and structural theoretical molecular descriptors. Chemosphere, 67(2), 351-358.

Jayaprakash, V., Saravanan, T., Ravindran, K., Prabha, T., Selvaraj, J., Jayapalan, S., ... & Sivakumar, T. (2023). Relevance of Machine Learning to Predict the Inhibitory Activity of Small Thiazole Chemicals on Estrogen Receptor. Current Computer-Aided Drug Design, 19(1), 37-50.

OECD (2014), Guidance Document on the Validation of (Quantitative) Structure-Activity Relationship [(Q)SAR] Models, OECD Series on Testing and Assessment, No. 69, OECD Publishing, Paris, https://doi.org/10.1787/9789264085442-en.

Authors

Ravindran Karuppaiyan
Anitha Gunavel
Kasthuri Bai Solai
Prabha Thangavelu
Karuppaiyan, R. ., Gunavel, A. ., Solai, K. B. ., & Thangavelu, P. . (2024). Identification of a 2-aminothiazole framework using classical QSAR model targeting chloroquine-sensitive Plasmodium falciparum. International Journal of Research in Pharmaceutical Sciences, 15(1), 12–24. https://doi.org/10.26452/ijrps.v15i1.4659

Article Details

No Related Submission Found