Identification of a 2-aminothiazole framework using classical QSAR model targeting chloroquine-sensitive Plasmodium falciparum
Abstract
Full text article
References
Rastelli G, Pacchioni S, Sirawaraporn W, Sirawaraporn R, Parenti MD, Ferrari AM. Docking and database screening reveal new classes of Plasmodium falciparum dihydrofolate reductase inhibitors. Journal of Medicinal Chemistry. 2003 Jul 3;46(14):2834-45.
Hill DG. The biochemistry and physiology of Tetrahymena. Elsevier; 2012 Dec 2..
Guha, R., & Jurs, P. C. (2004). Development of QSAR models to predict and interpret the biological activity of artemisinin analogues. Journal of chemical information and computer sciences, 44(4), 1440-1449.
Katsila, T., Spyroulias, G. A., Patrinos, G. P., & Matsoukas, M. T. (2016). Computational approaches in target identification and drug discovery. Computational and structural biotechnology journal, 14, 177-184.
Cherkasov, A., Muratov, E. N., Fourches, D., Varnek, A., Baskin, I. I., Cronin, M., ... &Tropsha, A. (2014). QSAR modeling: where have you been? Where are you going to?. Journal of medicinal chemistry, 57(12), 4977-5010.
Prabha, T., Sivakumar, T. Design, Synthesis, and Docking of Sulfadiazine Schiff Base Scaffold for their Potential Claim as INHA Enoyl-(Acyl-Carrier-Protein) Reductase Inhibitors. Asian J Pharm Clin Res.,2018, 11(10), 233-237.
Macalino, S. J. Y., Billones, J. B., Organo, V. G., & Carrillo, M. C. O. (2020). In silico strategies in tuberculosis drug discovery. Molecules, 25(3), 665.
U., Safder, K., Nam, Kim, D., Shahlaei, M., and Yoo, C. (2018). Quantitative structure-property relationship (QSPR) models for predicting the physicochemical properties of polychlorinated biphenyls (PCBs) using deep belief network. Ecotoxicology and environmental safety, 162, 17-28.
Siddiqui N, Arya SK, Ahsan W, Azad B. Diverse biological activities of Thiazoles: A Retrospect. Int J Drug Dev Res. 2011 Oct;3(4):55-67.
Prabha T, Aishwaryah P, Manickavalli E, Chandru R, Arulbharathi G, Anu A, Sivakumar T. A Chalcone Annulated Pyrazoline Conjugates as a Potent Antimycobacterial Agents: Synthesis and in Silico Molecular Modeling Studies. Research Journal of Pharmacy and Technology. 2019;12(8):3857-65.
Ozdemir A, Turan-Zitouni G, Kaplancikli ZA, Revial G, Güven K. Synthesis and antimicrobial activity of 1-(4-aryl-2-thiazolyl)-3-(2-thienyl)-5-aryl-2-pyrazoline derivatives. Eur J Med Chem. 2007 Mar;42(3):403-9.
Cohen A, Verhaeghe P, Crozet MD, Hutter S, Rathelot P, Vanelle P, Azas N. Tandem synthesis and in vitro antiplasmodial evaluation of new naphtho [2, 1-d] thiazole derivatives. European journal of medicinal chemistry. 2012 Sep 1;55:315-24.
González Cabrera D, Douelle F, Feng TS, Nchinda AT, Younis Y, White KL, Wu Q, Ryan E, Burrows JN, Waterson D, Witty MJ. Novel orally active antimalarial thiazoles. Journal of medicinal chemistry. 2011 Nov 10;54(21):7713-9.
Gramatica, P., &Sangion, A. (2016). A historical excursus on the statistical validation parameters for QSAR models: a clarification concerning metrics and terminology. Journal of chemical information and modeling, 56(6), 1127-1131.
Roy, K., & Narayan Das, R. (2014). A review on principles, theory and practices of 2D-QSAR. Current drug metabolism, 15(4), 346-379.
Mulatsari E, Mumpuni E, Nurhidayati L, et al. Chemical molecular visualization training with chemsketch software for senior high school students. JurnalPengabdianMasyarakat 2021;2(1):102112.
Gramatica, P. (2007). Principles of QSAR models validation: internal and external. QSAR & combinatorial science, 26(5), 694-701.
Gramatica, P., Chirico, N., Papa, E., Cassani, S., &Kovarich, S. (2013). QSARINS: A new software for the development, analysis, and validation of QSAR MLR models.Journal of Computational Chemistry,34 (24), 21212132.
González Cabrera D, Douelle F, Feng TS, Nchinda AT, Younis Y, White KL, Wu Q, Ryan E, Burrows JN, Waterson D, Witty MJ. Novel orally active antimalarial thiazoles. Journal of medicinal chemistry. 2011 Nov 10;54(21):7713-9.
Mjambili F, Njoroge M, Naran K, De Kock C, Smith PJ, Mizrahi V, Warner D, Chibale K. Synthesis and biological evaluation of 2-aminothiazole derivatives as antimycobacterial and antiplasmodial agents. Bioorganic & medicinal chemistry letters. 2014 Jan 15;24(2):560-4.
Roy, K., & Mitra, I. (2011). On various metrics used for validation of predictive QSAR models with applications in virtual screening and focused library design. Combinatorial chemistry & high throughput screening, 14(6), 450-474.
Papa, E., Dearden, J. C., &Gramatica, P. (2007). Linear QSAR regression models for the prediction of bioconcentration factors by physicochemical properties and structural theoretical molecular descriptors. Chemosphere, 67(2), 351-358.
Jayaprakash, V., Saravanan, T., Ravindran, K., Prabha, T., Selvaraj, J., Jayapalan, S., ... & Sivakumar, T. (2023). Relevance of Machine Learning to Predict the Inhibitory Activity of Small Thiazole Chemicals on Estrogen Receptor. Current Computer-Aided Drug Design, 19(1), 37-50.
OECD (2014), Guidance Document on the Validation of (Quantitative) Structure-Activity Relationship [(Q)SAR] Models, OECD Series on Testing and Assessment, No. 69, OECD Publishing, Paris, https://doi.org/10.1787/9789264085442-en.
Authors
Copyright (c) 2024 International Journal of Research in Pharmaceutical Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.