Abstract
BCR gene is expressed in patients with Philadelphia-positive Leukemias, known as chronic myeloid leukaemia (CML). Here, we focus on how the intramolecular domains and transmembrane segments are involved in the mutated sites of BCR. In this research work, we thoroughly analysed the transmembrane segments and the functional domains and predicted the 3D structure. We applied two kinds of techniques in our work. One is sequence-based, where we proved that the transmembrane segments in the functional domains contain the mutated sites. The second technique is structure-based, where we predicted the 3D structure of BCR gene-coded protein and visualised the transmembrane segments, which included the mutated sites. By using advanced molecular visualisation tools, the molecular structural properties of the respective transmembrane regions of amino acids will be determined. Both the techniques involved the use of advanced insilico tools and database. Our results elucidated that both the sequence and structure-based outcomes represented the identified transmembrane segments in the functional domains, which are potential candidates for drug docking studies. Hence, we finally concluded that this research work would play a vital role in clinical oncology and structure-based drug designing. Our research work is the first attempt to prove that potential drug binding sites are present in BCR oncogene-protein using insilico techniques. The results of this research investigation form a basic foundation for structure-based drug designing.
Full text article
Authors
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.