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Chloroquine-sensitive Plasmodium falciparum is the most deadly form of 
human malaria. It is associated with a number of mutations in P. falciparum. 
Chloroquine-resistant transporter is a protein that serves as a transporter in 
the parasite's digesting vacuole membrane. In order to combat chloroquine-
sensitive P. falciparum strains (NF54), this study employs QSAR modelling 
to examine possible structural alterations of 2-amino-thiazole derivatives. 
The traditional QSAR model was built using the PaDEL descriptor via 
QSARINS software. The model was found to have an internal cross-validation 
value of Q2loo = 0.7890 and an external validation parameter of RMSE ext = 
0.6938. The predicted pIC50 values from the QSAR techniques for the case 
study chemicals were compared and found to be well fitted to the model and 
well predicted for the external set of compounds. The outcome demonstrates 
the value of using the suggested method in the creation of new medication 
candidates could fill the critical gap in scientific knowledge and open up 
novel possibilities for pharmaceutical development.  
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INTRODUCTION 

Millions of people die from malaria each year, 
making it one of the most common diseases on 
Earth. The advent of plasmodium strains that 
exhibit sensitivity and/or resistance to established 
chemotherapeutic drugs has exacerbated the 
health issue created by malaria, one of the most 
deadly parasite illnesses. Furthermore, to make 
more challenging medical treatment for malaria in 
endemic regions, the lack of cutting-edge 
technology, and reasonably priced medications has 
increased the fatality rate [1]. This scenario 
emphasizes how vital it is to find novel anti-
malarial drugs. However, medical chemists are 
driven to find novel chemical substances that could 
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be useful as antimalarials due to the decreasing 
availability and expensive price of artemisinin and 
similar drugs. While there are some experimental 
techniques for determining whether a chemical has 
antimalarial activity (such as in vivo and in vitro 
assay tests), none of them are particularly helpful 
or cheap, and they may result in harmful 
byproducts from the current experimental 
procedures. All of these techniques have been 
tested using biological materials and receptors that 
are preferable to humans, rats, and mice [2]. Using 
quantitative structure-activity relationship (QSAR) 
approaches is an effective way to collect a full set of 
data without having to conduct costly laboratory 
tests. 

To overcome this hurdle faced by researchers, 
many hybrid in silico technologies are now 
employed to expedite the drug discovery process. 
Modifying the structure of natural products with 
well-established activities and then using 
statistical techniques (QSAR) to determine 
correlations among chemical structures and their 
corresponding biological activities is an effective 
approach that could be taken into consideration to 
find potential drugs quickly [3]. Recently, to design 
relevant structural information for designing 
medicines with greater biological activities, the use 
of machine learning has grown into an important 
tool in drug discovery due to the rise of chemical 
data [4][5]. Once a link between structure 
properties and activity is discovered, any number 
of compounds, including ones that have not been 
synthesised yet, may easily be tested for the 
selection of compounds with the desired features 
[6][7]. Additionally, some computer techniques, 
such as partial least squares regression (PLS) and 
multiple linear regression (MLR), have been 
demonstrated to be effective in establishing these 
correlations [8].  

The method is used in a statistical analysis to 
produce several QSAR models and choose 
appropriate descriptors. The best model created 
can be used to forecast test set chemicals that have 
not been included in the training set chemicals 
after the analysis of QSAR models has been done. 
The model's appropriate validation is ensured by 
randomization tests run on it at varied intervals of 
confidence levels. The primary goal of this work is 
to create a new QSAR model that will predict the 
anti-malarial activity of derivatives of 2-
aminothiazole compounds. It has been previously 

shown that thiazole compounds have a wide range 
of biological actions, including antimycobacterial 
and antimalarial activity [9][10][11][12][13]. 

This study aimed to develop a robust QSAR model 
by employing 2-aminothiazole compounds as an 
antagonist of chloroquine-sensitive NF54 strains. 
This work is a continuation of our attempts to build 
a QSAR model, which is necessary in today's drug 
discovery process. Herein, we report a QSAR model 
developed by using traditional QSARINS software 
for the statistical analysis and validation of 2-
aminothiazole derivatives. Following the proper 
preprocessing, the PaDEL descriptors have been 
calculated and utilised to construct QSAR models 
to determine the association between the 
biological activity (measured in µM/ml) and the 
properties of 2-aminothiazole, as indicated by the 
molecular descriptors [14][15]. Our proposed 
study could address a significant gap in scientific 
knowledge and open up novel possibilities for 
pharmaceutical development. 

METHODOLOGY  

Software and interactive computing platform 
used 

The 2D QSAR prediction model is developed using 
QSARINS software. The compounds' 2D structures 
were drawn using ACD/Labs ChemSketch. Using 
Chem3D Pro version 12.0.2.1076, the MM2 force 
field was utilised to minimise the energy of the 
three-dimensional structure. The molecular 
descriptors were created using the PaDEL 
descriptor software (version 2.20) [16]. Using 
ordinary least squares, the MLR-QSAR prediction 
models were created via QSARINS software. MLR 
and genetic algorithms (GA) serve as components 
of a hybrid technique employed by QSARINS 
[17][18]. It aids in the development of highly 
predictive yet simple QSAR models.  

Dataset collection and transformation 

A dataset of 48 diverse derivatives of 2-amino 
thiazole with their IC50 inhibitory values (µM) 
against the malarial cloroquine-sensitive NF54 
strain has been retrieved from the previously 
reported work [19][20]. To convert the 
experimental activity values of the chemicals in the 
dataset, which were represented as µg/ml 
concentration, the logarithmic scale of their 
reciprocal values was calculated using the  
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Table 1 Structures of 2-aminothiazole along with their IC50 values 

S.No. Code STRUCTURE IUPAC NAME IC50 (µM) 

1. 3 

 

4-(pyridin-2-yl)thiazol-2-amine 47.8 

2. 4a 

 

N-(4-(pyridin-2-yl)thiazol-2-
yl)benzamide 

1.0 

3. 4b 

 

N-benzyl-4-(pyridin-2-yl)thiazol-2-
amine 

3.2 

4. 4c 

 

1-phenyl-3-(4-(pyridin-2-
yl)thiazol-2-yl)urea 

1.7 

5. 4d 

 

N-((4-(pyridin-2-yl)thiazol-2-
yl)carbamothioyl)benzamide 

2.7 

6. 5a 

 

4-bromo-N-(4-(pyridin-2-
yl)thiazol-2-yl)benzamide 

5.3 

7. 5b 

 

4-bromo-N-(4-(pyridin-3-
yl)thiazol-2-yl)benzamide 

15.9 

8. 5c 

 

4-bromo-N-(4-(pyridin-4-
yl)thiazol-2-yl)benzamide 

3.5 

9. 6 

 

2-bromo-N-(4-(pyridin-2-
yl)thiazol-2-yl)benzamide 

3.2 

10. 7 

 

3-bromo-N-(4-(pyridin-2-
yl)thiazol-2-yl)benzamide 

1.6 

11. 8 

 

4-iodo-N-(4-(pyridin-2-yl)thiazol-
2-yl)benzamide 

3.9 

12. 9 

 

4-(methylsulfonyl)-N-(4-(pyridin-
2-yl)thiazol-2-yl)benzamide 

5.9 

 



Kasthuri Bai Solai et al., Int. J. Res. Pharm. Sci., 2024, 15(1), 12-24 

© International Journal of Research in Pharmaceutical Sciences 15 
  

Table 1 Structures of 2-aminothiazole along with their IC50 values (Continued) 

S.No. Code STRUCTURE IUPAC NAME IC50 (µM) 

13. 10 

 

4-acetyl-N-(4-(pyridin-2-yl)thiazol-
2-yl)benzamide 

14.8 

14. 12 

 

4-nitro-N-(4-(pyridin-2-yl)thiazol-
2-yl)benzamide 

6.1 

15. 13 

 

N-(4-(pyridin-2-yl)thiazol-2-yl)-4-
(trifluoromethyl) 
benzamide 

18.6 

16. 14 

 

N-(4-(pyridin-2-yl)thiazol-2-yl)-4-
(trifluoromethoxy) 
benzamide 

5.5 

17. 15 

 

4-ethyl-N-(4-(pyridin-2-yl)thiazol-
2-yl)benzamide 

6.5 

18. 16 

 

4-butyl-N-(4-(pyridin-2-yl)thiazol-
2-yl)benzamide 

7.4 

19. 17 

 

4-(methylthio)-N-(4-(pyridin-2-
yl)thiazol-2-yl)benzamide 

7.6 

20. 18 

 

4-chloro-N-(4-(pyridin-2-
yl)thiazol-2-yl)benzamide 

1.3 

21. 19 

 

4-fluoro-N-(4-(pyridin-2-yl)thiazol-
2-yl)benzamide 

1.8 

22. 20 

 

N-(4-(pyridin-2-yl)thiazol-2-
yl)thiazole-4-carboxamide 

13.8 

23. 21 

 

N-(4-(pyridin-2-yl)thiazol-2-yl)-
1H-imidazole-5-carboxamide 

35.0 

24. 22 

 

N-(4-(pyridin-2-yl)thiazol-2-
yl)thiophene-2-carboxamide 

0.9 

25. 23 

 

N-(4-(pyridin-2-yl)thiazol-2-
yl)picolinamide 

35.6 
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Table 1 Structures of 2-aminothiazole along with their IC50 values (Continued) 

S.No. Code STRUCTURE IUPAC NAME IC50 (µM) 

26. 24 

 

N-(4-(pyridin-2-yl)thiazol-2-
yl)nicotinamide 

36 

27. 25 

 

N-(4-(pyridin-2-yl)thiazol-2-
yl)isonicotinamide 

1.9 

28. 3 

 

N-(4-(aminomethyl)thiazol-2-yl)-1-
benzyl-3-(tert-butyl)-1H-pyrazole-
5-carboxamide 

0.08 

29. 11 

 

N-(4-(acetamidomethyl)thiazol-2-
yl)-1-benzyl-3-(tert-butyl)-1H-
pyrazole-5-carboxamide 

4.27 

30. 12 

 

1-benzyl-3-(tert-butyl)-N-(4-
(methylsulfonamidomethyl)thiazol-
2-yl)-1H-pyrazole-5-carboxamide 

2.93 

31. 13 

 

1-benzyl-3-(tert-butyl)-N-(4-
((dimethylamino)methyl)thiazol-2-
yl)-1H-pyrazole-5-carboxamide 

1.48 

32. 14 

 

1-benzyl-3-(tert-butyl)-N-(4-
((methylamino)methyl)thiazol-2-
yl)-1H-pyrazole-5-carboxamide 

0.19 

33. 15 

 

1-benzyl-3-(tert-butyl)-N-(4-
(hydroxymethyl)thiazol-2-yl)-1H-
pyrazole-5-carboxamide 

0.67 

34. 18 

 

N-(4-(aminomethyl)thiazol-2-yl)-3-
(tert-butyl)-1-methyl-1H-pyrazole-
5-carboxamide 

34.11 

35. 19 
 

N-(4-(aminomethyl)thiazol-2-yl)-
1H-pyrazole-5-carboxamide 

45 

36. 20 
 

N-(4-(aminomethyl)thiazol-2-
yl)benzofuran-2-carboxamide 

36.62 
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following equation: The experimental activity 
levels, therefore, resemble the usual distribution. 
The structures of 2-aminothiazole along with their 
IC50 values in µM are listed in Table 1.  

pIC50 = −log10 [IC50] 

Computation of molecular descriptors  

The structure was stored as a ‘.mol’ file format after 
optimisation, and it was then loaded into the 
PaDEL descriptor programme to compute around 
1445 descriptors for each molecule. The dataset 
employed in this study consists of the biological 
activity of the compounds and the accompanying 
chemical descriptors. However, we have ultimately 

arrived at 917 descriptors for our machine 
learning QSAR model protocol after performing 
preprocessing such as deleting highly correlated 
descriptors, zeros, and missing values. 

Optimised retrieval of descriptors  

The first step in QSAR analysis is choosing the most 
appropriate descriptors from the libraries of 
available descriptors. The most important 
descriptors were chosen for this investigation 
using the genetic algorithm (GA) approach 
included in the QSARINS program with respect 
to an objective function (the cross-validation 

Table 1 Structures of 2-aminothiazole along with their IC50 values (Continued) 

S.No. Code STRUCTURE IUPAC NAME IC50 (µM) 

37. 21 

 

N-(4-(aminomethyl)thiazol-2-yl)-1-
benzyl-1H-indole-2-carboxamide 

6.98 

38. 22 
 

N-(4-(aminomethyl)thiazol-2-yl)-4-
methoxybenzamide 

11.10 

39. 23 
 

N-(4-(aminomethyl)thiazol-2-
yl)pyridazine-4-carboxamide 

42.54 

40. 24 
 

N-(4-(aminomethyl)thiazol-2-
yl)isoxazole-3-carboxamide 

45 

41. 25 
 

N-(4-(aminomethyl)thiazol-2-yl)-
1H-indole-2-carboxamide 

22.21 

42. 26 
 

N-(4-(aminomethyl)thiazol-2-
yl)benzamide 

42.87 

43. 27 
 

N-(4-(aminomethyl)thiazol-2-yl)-4-
chlorobenzamide 

37.45 

44. 28 
 

N-(4-(aminomethyl)thiazol-2-
yl)picolinamide 

43 

45. 29 
 

N-(4-(aminomethyl)thiazol-2-
yl)pyrimidine-2-carboxamide 

44 

46. 30 
 

N-(4-(aminomethyl)thiazol-2-yl)-
1H-1,2,3-triazole-5-carboxamide 

45 

47. 31 

 

N-(4-(aminomethyl)thiazol-2-yl)-1-
benzyl-1H-1,2,3-triazole-5-
carboxamide 

3.19 

48. 32 
 

N-(4-(aminomethyl)thiazol-2-yl)-1-
benzyl-1H-1,2,3-triazole-4-
carboxamide 

3.19 
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correlation coefficient of leave-one-out, 
abbreviated as R2cv). 

Model development using QSARINS 

The QSAR model via QSARINS has been created 
using the multiple linear regression technique. 
Molecular descriptors, the independent variable in 
this study, and dependent variable Y (pIC50) were 
found to be linearly correlated using the MLR 
approach. The basic principle is least squares 
modelling, which fits the model to minimise the 
sum-of-squares of the variations between the 
observed and predicted values. Regression 
coefficient values (R2) are estimated by MLR using 
the least squares fitting of the curve technique. The 
model best resembles all of the separate points of 
data by creating an interaction that seems to be a 
straight line (linear). This is how a regression 
equation looks: 

Y = m1x1 + m2x2 + m3x3 + c 

where ‘Y’ is biological activity, all 'm's are 
regression coefficients for the corresponding 
independent variable, ‘x’ is a regression constant, 
and ‘c’ is an intercept. 

Y-scrambling test  

As suggested by Roy and Mitra (2011) [21], the 
information from the training set was subjected to 
the y-scrambling, or y-randomization test, to make 
sure the generated QSAR model is reliable and not 
obtained by chance. It acts as an external validation 
measure to evaluate the generated QSAR model's 
validity and reliability. In the present investigation, 
the independent variable remains constant while 
the dependent variable is randomly scrambled for 
building MLR models. The created models are 
flexible, as evidenced by the predicted significantly 
low R2 and leave-one-out cross-validated 
correlation coefficient Q2loo values for multiple 
runs in the derived models. 

Model applicability domain  

It has been suggested to evaluate the applicability 
domain of the model in order to determine if a 
QSAR model is reliable for making predictions 
within the chemical space in which it has been 
designed. A QSAR model can have its applicability 
domain defined in several ways. However, the most 
popular leverage technique was applied in the 
present study [17]. The warning leverage (h∗) is a 
predictive tool that is defined as h∗ = 3(P + 1)/n, 

where ‘P’ is the number of descriptors in the model 
and ‘n’ is the number of training compounds. It 
represents the limit of the normal range for ‘X’ 
outliers. For test compounds with leverages hi < h∗, 
predictions made by the model have been accepted 
as reliable. 

Williams' plot, which shows the standardised 
residuals against leverage levels, provides a 
graphic depiction of the QSAR model's applicability 
domain. It was applied in the present study to 
interpret the produced model's applicability 
domain. For chemicals in the external test set, the 
domain of reliable prediction was characterized as 
those with leverage levels within the threshold 
range of hi < h∗ and standardized residuals no 
larger than ±3 standard deviation values. A test set 
was considered a Y outlier if its standard deviation 
units were more than ±3. Additionally, the training 
set contains molecules that are influential, that is, 
compounds having the largest structural effect (h > 
h∗), which were identified using the Williams plot 
and employed in the model's development. With 
the use of the QSARINS programme, further 
statistical analyses, including the Insurbia plot and 
the Y-scrambling analysis plot, were completed 
and included in this article. Professor Gramatica's 
pioneering work—the ones that developed this 
QSARINS software—provides complete details on 
the methods used in these analyses [18]. 

Model quality assessment and validation  

The following statistical metrics were used to 
assess the robustness, fitting criteria, predictive 
efficacy, stability, and reliability of the QSAR 
models created in this study. F test (Fischer's value) 
for statistical significance; R2 (the squared 
correlation coefficient); the variables that are 
acquired by the randomised test are: α (the 
statistical importance parameter derived from the 
randomization test); randR2 (the highest value of 
R2 in the randomization test); pred R2 (R2 for the 
external test set); and CV R2 (the cross-validated 
correlation coefficient). 

R2 is the regression coefficient, which is a relative 
indicator of how well the regression equation fits 
the data. R2> 0.6, Q2> 0.6, and R2pred> 0.5 are the 
requirements that must be met for a QSAR model 
to be considered accurate [17][18]. The F-test 
displays the ratio of the variance accounted for by 
the regression error to the variance explained by 
the model. The model is statistically significant 
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when the F-test has high scores. The model's 
absolute fitness quality is demonstrated by the low 
standard errors of pred R2se, Q2se, and R2se [22]. 
However, the QSAR model needs to meet the 
minimum recommended statistical values listed by 
Professor Gramatica's research guidelines to be 
considered acceptable [17][18]. 

RESULTS 

It remains a fascinating scientific effort to find 
novel heterocycles with potency for numerous 
biological targets. The objective of the present 
investigation is to demonstrate how the variation 
in structure impacts the antimalarial efficacy and 
to build a QSAR model of novel 2-aminothiazole 
derivatives for their antimalarial activity. 
Considering IC50 values ranging from 0.08 μM to 
47.8 μM, the 2-aminothiazole derivatives 
demonstrated remarkable antimalarial efficacy. To 
study and investigate the structural properties of 
2-aminothiazole analogues, a QSAR model has 
been created. Its parameters were well-fit, and 
extensive validation had been done following the 
OECD regulatory requirements. Additionally, the 
applicability domain was established. We carried 
out ligand-based in silico investigations to 
understand the interaction between the structural 
characteristics and the biological activity of the 
compounds.  

QSAR model development and validation  

For our comparative QSAR modeling investigation, 
the 2-aminothiazole derivatives and their 
antimalarial activity (pIC50) were utilized. Both the 
machine learning programme and the QSARINS 
software were used to produce an MLR-QSAR 
model. A total of 48 compounds having 
antimalarial activity against the chloroquine 
sensitive strain were gathered from the literature 
for our research. The PaDEL descriptor software 
was used to compute the molecular descriptors. 
For each chemical, it computed about 917 
molecular descriptors.  

While building the model using QSARINS, about 
465 molecular descriptors with more than 80% 
constant values and more than 95% 
intercorrelated molecular descriptors were 
eliminated via the molecular descriptor step's 
processing. Two sets were created from the 
gathered data set: the training set (70%) and the 
test set (30%), also known as the prediction set. 

The training dataset (35 compounds) was used for 
QSAR model development, and the test/prediction 
dataset (13 compounds) was used for validation of 
the developed QSAR model. Whereas, when 
building the QSAR model using a machine learning 
programme, all 917 descriptors were utilised; later, 
following principle component analysis, the 
selected descriptors were used for the model 
equation. 

Interpretation of result obtained via QSARINS 
software 

The different statistical parameters for the 
generated QSAR models are listed in Table 2. The 
fitting criteria and internal and external validation 
parameters of the model are shown in Table 3. The 
correlation matrices between the chemical 
descriptors in the generated QSAR model are 
shown in Table 4. The generated QSAR model's 
applicability domain was determined with the help 
of the Williams plot. The Williams plot of the 
model's constituent compounds appears in Figure 
4. In accordance with the Williams plot that 
describes the model's applicability domain, the 
model successfully predicted the activity of each 
compound in the dataset. For the QSAR model, the 
applicability domain was set within a squared area 
of leverage threshold of ± 2.5 standard residuals in 
the y-axis and h* = 0.300 in the x-axis. 

Table 2 Model statistics and validation 
parameters 
Variable Coeff. Std.Coeff. Co.Int.95% 
Intercept 13.9652  2.7841 
VE1_Dzv -3.5391 -0.4174 1.7340 
ASP-7 -161.4155 -0.4786 70.9777 
maxHaaCH -1.2847 -0.2220 1.0671 

It can be observed in Table 2 that the model's most 
significant contributions are contributed by 
VE1_Dzv; ASP-7; maxHaaCH. Since these 
descriptors are positively associated with activity, 
adding more of them to a chemical would improve 
its bioactivity. Although the fitting parameters 
show that the model incorporates the individual 
contributions of the descriptors, the internal 
validation parameter Q2loo shows that the value of 
0.7890 is above the threshold value of 0.5, 
suggesting the capability of the model to analyse 
the activity of the compounds concerning the 
descriptors. The external validation value in Table 
3 demonstrates that RMSEext = 0.6938, suggesting 
the model can accurately predict the chemicals 
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that fall within its applicability domain but were 
not specifically employed in its development. 

Table 3 The correlation matrices between the 
chemical descriptors 

 VE1_Dzv ASP-7 maxHaaCH 
VE1_Dzv 1.0000   
ASP-7 -0.6093 1.0000  
maxHaaCH -0.4391 0.3850 1.0000 

 

Figure 1 Scatter plot of experimental pIC50 

The experimental activity of the MIC values is 
shown against the predicted activity (pIC50) 
determined by the constructed QSAR model in 
Figure 1. The figure indicates that around 90% of 
the data were located along the plot's tread line. 

The QSAR model was developed using the data, 
which were scattered uniformly over the plot. The 
experimental value leave-one-out cross-
validation plot is displayed in Figure 2. The figure 
not only demonstrates that the training and test 
sets were distributed equally over the tread line, 
but it also demonstrates how well the model was 
able to predict the experimental activity.  

 

Figure 2 Scatter plot of experimental pIC50 

Figure 3 shows the outlier detection graph and 
also notes the presence of low residual values 
between the observed bioactivities and predicted 
values, which should be within ±1. It also 
demonstrates the lack of compounds with a 
significant degree of error in their validation as 

Table 4 Characteristic Fitting criteria with internal and external validation of the model  

(Fitting criteria) 
R2: 0.8414  R2adj: 0.8195    R2-R2adj: 0.0219   CCC tr: 0.9139   
s: 0.3082   F: 38.4673 
(Internal validation criteria) 
Q2loo: 0.7890    R2-Q2loo: 0.0524   RMSE cv: 0.3284     
CCC cv: 0.8872   Q2LMO: 0.7597   R2Yscr: 0.1202      
(External validation criteria) 
RMSE ext: 0.6938   MAE ext: 0.5890   PRESS ext: 6.2586   R2ext: 0.0409   
Q2-F1: -0.5710   Q2-F2: -0.6379   Q2-F3: 0.0579   CCC ext: -0.1631 
r2m aver.: -0.0153   r2m delta: 0.0503 
Predictions by LOO: 
Exp(x) vs. Pred(y): R2: 0.7909   R'2o: 0.7577   k': 0.9992   Clos':0.0420   r'2m: 0.6469  
Pred(x) vs. Exp(y): R2: 0.7909   R2o: 0.7891   k: 0.9992   Clos: 0.0024   r2m: 0.7568  
External predictions by model equation: 
Exp(x) vs. Pred(y): R2: 0.0409   R'2o: -3.9251  k': 1.0143   Clos':97.0790  r'2m: -0.0405  
Pred(x) vs. Exp(y): R2: 0.0409   R2o: -0.5354   k: 0.9794   Clos: 14.1065   r2m: 0.0098  
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compounds. Although the chemical structures of 
these compounds differed from those of the 
remaining compounds in the dataset, the model 
was still able to predict all of them. The 
applicability domain plot of the Hat diagonal 
leverage value against the predicted model is 
displayed in Figure 4. It aids in identifying the 
QSAR model's outliers; it reveals the existence of 
no outliers with standard residuals greater than 
2.5. The y-randomization plot is displayed in 
Figure 5, which demonstrates how error-free and 
reliable the model performed. 

 

Figure 3 Residual plot of predicted endpoint 
versus standard residuals 

 
Figure 4 Applicability domain plot against the 
predicted endpoint 

 

Figure 5 Scatter plot of Y-scrambled model 
compared with the original model 

QSAR Mathematical formula derived from 
QSARINS software 

pIC50 = 13.9652 -3.5391 (VE1_Dzv) -161.4155 
(ASP-7) -1.2847 (maxHaaCH) 

R2: 0.8414; R2adj: 0.8195; F: 38.4673; Q2loo: 
0.7890; RMSE cv: 0.3284; CCC cv: 0.8872; R2Yscr: 
0.1202; RMSE ext: 0.6938 

DISCUSSION  

We examined the effectiveness and applicability of 
the machine learning approach in medicinal 
chemistry by comparing it with other modern 
QSAR approaches, such as the machine learning 
approach, along with more conventional QSAR 
methods, like PLS and MLR. It has been shown that 
machine learning has remarkable prediction 
accuracy when the parameters are changed [23]. In 
contrast to other 3D-QSAR approaches, PLS and 
MLR are techniques used for manipulating huge 
quantities of data and facilitating the easy creation 
of models. The models in the present research 
were generated by carefully integrating the same 
set of data and descriptions. All of the chemicals in 
the collection had their bioactivity predicted using 
the QSAR model, and a Williams plot was used to 
determine the applicability domain. The OECD 
Work Programme on QSARs' principle [24] 
emphasises the critical necessity for an application 
domain to potentially find significant compounds 
and outliers. 
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We created QSAR models using QSARINS software 
that exhibited strong model fitting and adhered to 
the OECD guidelines for producing reliable 
predictive QSAR models. This model's Q2value is 
0.7890, indicating that it has good internal 
predictive potential. The created model's 
correlation coefficient (R2 = 0.8414) indicated its 
quality of fit. The prediction power of the 
generated QSAR model was assessed using an 
external correlation coefficient (R2adj = 0.8043). 
The suggested QSAR models are not the result of 
random correlation, as indicated by the lower 
R2Yscr values. A minimum variance of 0.1202 (less 
than 0.3) in R2 and R2adj supported the significance 
of the number of chemical descriptors in the built 
QSAR model. The generated QSAR model's 
robustness was validated by the lowest R2-Q2loo 
variation of 0.0524 (less than 0.3). 

Using this approach, we omitted a single 
compound, built a model using the leftover 
compounds, and then estimated the activity of the 
omitted compound. The leave-many-out (LMO) 
approach, which excludes 30% of the compounds 
in order to build the prediction model and examine 
the model's behaviour, is a subsequent, more 
potent method included in the QSARINS. Table 1 
contains all of the model's statistical parameters. 
The model's regression coefficient of 
determination, called R2, is 0.8414 and helps 
determine the model's quality of fit. The R2 value of 
an acceptable model needs to be higher than 0.6. 

The adjusted coefficient of determination, denoted 
R2adj, provides information on the acceptability of 
adding new chemical descriptors to the QSAR 
model. R2adj must be more than 0.6 for a model to 
be regarded as excellent. Friedman's lack of fit 
criteria, or LOF for short, evaluates overfitting in 
the QSAR model. A model's LOF must be less than 
0.3 to be regarded as excellent. The total 
correlation between the descriptors is represented 
by Kxx. Delta K represents the correlation 
difference between the response (kxy) and the 
descriptor (kx), as well as the correlation 
difference between both of them. In the training set, 
RMSEtr refers to root-mean-square error. An 
acceptable model's root mean square error (RMSE) 
should be less than 0.3. 

A model's performance is regarded as good if its 
mean absolute error (MAE), which is the correction 
calculated within the training set, is less than 0.3. 

The letter "S" represents the standard estimate 
error. A 'S' value of less than 0.3 is indicative of an 
effective model. Furthermore, it is important to 
minimise both R2Yscr and Q2Yscr to demonstrate 
that the model that was built was not the result of 
random correlation. All of the necessary statistical 
variables are satisfied by the model. The generated 
model's predictive ability may be measured using 
the Q2-F1, Q2-F2, and Q2-F3 values. 

The concordance correlation coefficient, 
abbreviated as CCC, needs to be close to 1 for a 
model to qualify as acceptable. The degree of 
similarity between the experimental and predicted 
results is measured by this CCC number and found 
to be close to 1 (Table 3). The most dependable 
and consistent variables are Q2F3 and CCC. Fisher's 
F value, which should be greater than the 
theoretical threshold, is shown by the value of F. 
William's plot illustrated the selected model's 
applicability domain. It demonstrated that the 
majority of the compounds fell within the 
application domain of the model's chemical space. 
The antimalarial activity in the model is influenced 
by several molecular descriptors, including 
VE1_Dzv, ASP-7, and maxHaaCH. Of these, all three 
descriptors impacted negatively, and these 
contributed well to the antimalarial activity. Where 
the VE1_Dzv (Coefficient sum of the last 
eigenvector from Barysz matrix / weighted by van 
der Waals volumes) descriptor is related to the 
barysz matrix, ASP-7 (Average simple path, order 
7) is related to the chi path, and maxHaaCH 
(Maximum atom-type H E-State:CH:) is related to 
the atom type electrotopological state. 

CONCLUSIONS  

A QSAR model has been created and compared 
using the QSARINS programme and a machine 
learning algorithm. Employing 48 potent 2-
aminothiazole inhibitors of the MTB strain with 
917 PaDEL descriptors showed that the three 
molecular descriptors, viz., VE1_Dzv, ASP-7, and 
maxHaaCH, are included in the model by QSARINS 
and have contributed the most to the model. R2ext 
= 0.8414, the external validation parameter, was 
more than the minimal value needed to create a 
QSAR model. Additional findings, including the 
Williams plot and Insurbia data, helped to optimise 
the selection procedure for the further compounds 
that were used to create the more active molecules.  
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The findings of this study therefore supported our 
research hypothesis that the newly developed 2-
aminothiazole derivatives might serve as a 
valuable "lead" molecule for the eventual 
development of antimalarial agent. It is advised 
that these compounds be subjected to further 
laboratory testing, including in vitro and in vivo 
analyses, or biological assessment. The model 
generated by QSAR methods given in this article 
satisfied every statistical requirement and 
confirmed the requirements established by the 
OECD principles. Hence, our article presents the 
characteristics (internal robustness, removal of 
chance correlation, external prediction, and 
applicability domain) for QSAR validation of the 
model and its ability to predict the activities of 
future compounds. 
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