

ISSN: 0975-7538 Research Article

# Evolutionary Analysis of unique membrane protein gene family of Acidithiobacillus ferrooxidans

Premsingh J<sup>1</sup>, Haritha V<sup>2</sup>, Febin Prabhu Dass J<sup>1</sup>, Anand Prem Rajan\*1

<sup>1</sup>School of Bio-Sciences and Technology, VIT University, Vellore – 632014, Tamil Nadu, India <sup>2</sup>Grace College of Education, Grace Nagar, Bhavani, Erode - 638316, Tamil Nadu, India

# ABSTRACT

Acidithiobacillus ferrooxidans is a gram negative chemolithoautotropic proteobacterium that lives in high concentration of soluble ferrous and ferric iron, making it an interesting model for understanding biological mechanisms of bioleaching and bio mining in extremely acidic conditions. This bacteria has fascinating challenges for cells that use energy from bioleaching to grow. In this study we focus on the role of bioinformatics and its tools used in analysis of various unique uncharacterized membrane proteins in this bacterium that helps in explaining the activity of Acidithiobacillus ferroxidans in industrial bioleaching and its role as a primary producer in acidic environment.

Keywords: Acidithiobacillus ferrooxidans; Bioleaching; Phylogenetic Analysis.

# INTRODUCTION

Acidithiobacillus ferroxidans is a chemolithoautotropic, y-proteobacterium which uses energy from the oxidation of iron- and sulfur-containing minerals for growth. It survives in mineral rich, acidic environments optimally at 30°C at extremely low pH of 1-2 which in turn fixes nitrogen and carbon from the atmosphere. They also solubilise other metals from rocks and plays a significant role in biogeochemical cycle in the atmosphere (Harrison 1984). This extremophile is mostly used for the bioleaching or bio-mining as the outer membrane of this bacterium is able to withstand acidic environments of pH 2-3 generate in the mining area (Guiliani & Jerez 2000). This outer membrane of Acidithiobacillus ferroxidans acts as a molecular sieve that acts as a passage channel for all ions and small hydrophilic organic molecules. This property of outer membrane is due to the presence of numerous speciali zed proteins which provide the porous nature to the membrane (Jap & Walian 1996; Koebnik et al. 2000; Nikaido 2003). The outer membrane of A. ferrooxidans helps bacteria not only as molecular sieve but also assists in the redox reaction activity like oxidation of ferrous iron or reduction of inorganic sulfur compounds for obtaining energy (Manchur et al. 2011). Therefore, studies of the structure and function of the outer membrane proteins of Acidithiobacillus ferrooxidans and their association with other membrane proteins is not fully understood.

\* Corresponding Author Email: aprdbt@gmail.com Contact: +91-9486336444 Received on: 28-03-2017 Revised on: 11-04-2017 Accepted on: 18-04-2017 The membrane studies may reveal description of mechanisms involved in the fundamental biological reactions of bioleaching (Manchur et al. 2011).

Bioleaching is a hydrometallurgical process in which metal is solubilized by chemolithotrophs. Chemolithotrophs like Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, Leptospirillus ferrooxidans plays a major role in the extraction of metals from its ores. These organisms attach to the surface of the minerals and enhances the bioleaching. The attachment of the organisms with the minerals is facilitated by chemotaxis (Harneit et al. 2006). Acidithiobacillus ferrooxidans is the most important organism in bioleaching. It is a gram negative y-proteobacterium has an optimum growth pH of 2 and optimum growth temperature of 30° C (Valdés, Pedroso, Quatrini & Holmes 2008). It obtains it energy from inorganic sources and fixes i ts own carbon. It is capable of oxidizing ferrous iron to ferric iron and sulphur and reduced sulphur compounds to sulphuric acid (Devasia & Natrajan K. A. 2004). It is widely studied because of its ability to recover metals like copper, gold, zinc cobalt from its ores. It is also important in the formation of acid mine drainage (Zhao et al. 2013).

During growth of *Acidithiobacillus ferrooxidans* on elemental sulphur, ferrous iron or sulfidic ores, membrane proteins play a key role in the transfer of electron (Zhang et al. 2002). The abundance or the activity of these membrane proteins may be up regulated due to the presence of solid substrate like sulphur and down regulated during the growth in iron containing solution (Ramírez et al. 2004).

There are two mechanisms involved in bioleaching by which *Acidithiobacillus ferrooxidans* oxidises the minerals 1. Indirect and 2. Direct mechanism. The indirect

©JK Welfare & Pharmascope Foundation | International Journal of Research in Pharmaceutical Sciences

mechanism is based on the Fe<sup>2+</sup> to Fe<sup>3+</sup> conversion cycle where Fe<sup>3+</sup> is a strong oxidizing agent and able to oxidize metal sulphides to metal sulphates and also mono sulphides and disulphides to thiosulphates. But direct mechanism is based on the attachment of the organism on the ore surface. After the attachment the bacteria enzymatically attack the metal sulphides forming leached pits (Devasia & Natrajan K. A. 2004), (Xia et al. 2013), (Zhao et al. 2013)).

Outer membrane proteins (OMPs) which are synthesized in bacterial cytoplasm acts as (i) adhesins, (Aeckersberg et al. 2001) (ii)pores or channels for passive diffusion of metal ions, (Freitag, Neupert, and Benz 1982) (iii) protein translocation pores and (iv) enzymes *e.g.* lipases, proteases..etc (Nikaido 2003). There arises many challenges on passage of compounds through periplasmic membrane to the outer membrane due to the hydrophobic nature of phospholipid layer (Mogensen & Otzen 2005).

The structure and function of the proteins are studied by performing experiments which are laborious and time consuming. The *in-silico* approach saves time and reduces redundancy thereby helping to understand the issues which are not possible through conventional and traditional molecular methods.

The extensive literature search has revealed the lacuna in the scientific arena about evolution of membrane proteins of extremophiles. This work was designed to understand the similarity in membrane proteins and choose the unique proteins in the cell membrane of *Acidithiobacillus ferrooxidans* enabling it to survive in the extreme environments.

# MATERIAL AND METHODS

#### Database search

The gene sequences of outer membrane proteins of *Acidithiobacillus ferroxidans* ATCC 23270 were collected from Gen-Bank/ EMBL/DDBJ (CP001219) (Valdés, Pedroso, Quatrini, Dodson, et al. 2008). The obtained accession number of the protein were submitted to SWISSPORT search engine to retrieve the FASTA sequence.

#### Selection of extremophiles

In order to get more subtle and accurate proteins of extremophiles the results obtained from BLASTP were further condensed by considering the percentage of maximum identity.

# Phylogenetic analysis of protein families

Phylogenetics is a graphical representation, aimed at describing sequences similarity through evolutionary relationships among various organisms depending on the computational methods (Stillman et al. 2009).

The sequences of proteins obtained from other extremophiles were used for BLASTP search to retrieve the sequences in FASTA format. All the FASTA sequence of proteins of extremophiles were obtained, aligned and submitted in CLUSTALW for multiple sequence alignment. The construction of Phylogenetic tree was done using CLUSTAL W.

# **Multiple sequence alignment**

Multiple sequence alignment of input query sequence were assumed to have an evolutionary relationship by which they share a common ancestor. This can also give conserved regions from which we can predict the secondary, tertiary structures and even individual amino acids and nucleotides. A list of all conserved regions were chosen for Phylogenetic analysis. The initial alignment were edited to produce a cladogram whi ch was used to find the closely related organisms.

# Structure prediction

For protein analysis, information in protein databases can be used to predict certain properties about a protein, which can be useful for its empirical investigation. Primary, secondary tertiary structures of the unique proteins were predicted using the tools available online.

# **Primary structure**

ProtParam was used for primary structure prediction and compute pl/Mw was used for the prediction of isoelectric point of the target protein sequence and molecular weight. These are free tools available at www.expasy.org. These tools uses extensive annotations available in the Swiss -Prot database mainly the position-specific annotations taking the posttranslational modifications in account (Gasteiger et al. 2005).

# Secondary structure

The Secondary structure was predicted using the tools GOR4 and SOPMA. The output of the program contains 2 parts in which the first one consist of the predicted secondary structure in rows, Helix, extended or beta strands, and coils and the second one consist of the probability values for each secondary structure at each amino acid position (Garnier et al. 1996), (Geourjon C 1995).

# **Tertiary structure**

The tertiary structure prediction was done with the tool SWISS-MODEL. It is an automated modelling system to determine the 3D structures of protein from its amino acid sequences using homology modelling techniques. It uses the friendly web interface for getting the input sequence and also to display the output. I - TASSER server was also used for the structure prediction (Biasini et al. 2014) (Zhang 2008; A Roy, A Kucukural 2010; Yang et al. 2015).

## RESULTS

To investigate whether a protein family is evolved by duplication or mutation in common ancestors. We have analysed protein family of *Acidithiobacillus fer*-

rooxidans and other neighbouring families phylogenetically. Specifically we wanted to find out whether these protein family were closely or distantly related to the neighbouring organisms. The protein family were analysed phylogenetically in which species of *Acidithiobacillus ferrooxidans* were used as outgrowth to provide relative results. Identification of the evolutionary relationships of the unique membrane proteins from *Acidithiobacillus ferrooxidans* among other related organisms across taxa provides evolutionary insight for the genetic distance and function. Phylogenetic trees were constructed for the five different proteins and results were interpreted.

FASTA of all protein sequences included in this family were collected and submitted in BLASTP search tool in which one protein had nearly 100 hits which represents closely and distantly related species based on the Evalue and this was used in the Phylogenetic analysis

Table 1: 65 Membrane proteins of *Acidithiobacillus ferrooxidans;* Out of 65 proteins identified, 38 proteins that are non-extremophiles were excluded based on 50% maximum identity.

Table 2: 27 Proteins Showing Complete Extremophilic Activity Considering the Stable Hit Value Of 50% Maximum Identity;The sequences were further filtered to 5 proteins with complete extremophiles taken in to consideration of 35% maximum identity.

Table 3: 5 Proteins Showing Complete Extremophilic Activity Considering the Stable Hit Value Of 35% Maximum Identity

# MSA and phylogenetic tree for serine protease, DO/DEQQ family

Multiple sequence alignment performed in this protein showed highly conserved region (**LGSGF, INPGNS**) residues in *Acidithiobacillus ferrooxidans, A. caldus, A. thioxidan, A. ferrivorans* and also few other closely related extremophiles. This conserved regions can be used for structure and function prediction. The following are the closely related organisms having this protein with our organism.

# Iron-sulphur cluster-binding protein:

Only a partial conserved regions were showed with this protein in multiple sequence alignment but the closely organism in the tree are *Acidithiobacillus ferrooxidans*, *A. thiooxidans*, *A. caldus*, *A. ferrivorans*, *Thioalkalvibrio sp*, *T. sulphidophilus*, *T. nitratireducens*, *Ectothiorhodospira*, *T. sibirica*, *H. denitrificans*.

# Putative uncharacterized protein

The results of this protein also show a partial conserved region and the closely related organisms are *A. ferrooxidans, Acidithiobacillus* GG1221, *A. ferrivorans, Acidiphilum* (fig. C). Among all closely related species the distance of *Acidithiobacillus* GG1221 is much higher.

# Thioredoxin protein family

This protein shows less conserved regions and a closely related organism shows the same species and different genus which might have the similar functions to our query organism when compared to other organisms (fig. D). The related organisms are *A. ferrooxidans, A. ferrivorans, A. caldus, Acidithiobacillus* GG1221

# Transcriptional regulator, MerR family

This protein shows more partially conserved regions and closely related organisms shows the same species and different genus which might have a similar function to the query organism. The related organism are *A. ferrovirans, A. thiooxidans, A. caldus, T. intermedia, Nitrococcus mobilis, Thiorhodococcus drewsii, Thioflavicoccus mobilis.* 

# Structure prediction

# **Primary structure**

In the primary structure prediction number of amino acids, its molecular weight and the isoelectric points of the unique membrane proteins have been identified. Among all the 5 proteins the Serine protease (AFE\_1396) have been found to have highest number of amino acids (479) and also higher molecular weight (48673). The Is-electric points of the 5 proteins are at neutral except for Iron-Sulfur Binding protein (AFE\_255).

# Secondary structure

The secondary structure was computed with online tools GOR and SOPMA. In GOR prediction out of 5 proteins 4 have around 90 to 100 amino acids used for the formation of alpha helices and the proteins AFE\_2867 has less amino acids used for alpha helix formation. The use of amino acids in extended strands and random coils were more in AFE\_1396 and AFE\_2463 when compared to other three proteins. There were no significant beta turns observed.

In SOPMA prediction the proteins with id AFE\_0373 and AFE\_1396 have used around 90 to 100 amino acids used for the formation of alpha helices whereas in AFE\_2463 and AFE\_2867 amino acids used for the formation of alpha helices were found to be less. But the protein with id AFE\_2555 has used more amino acid for the alpha helices (151 amino acids). The extended strands are more in AFE\_1396 and AFE\_2463 and other proteins have used considerably less amino acids. In AFE\_1396 and AFE\_2463 proteins 46 and 22 amino acids respectively were used for formation of beta turns. Random coils were also more in AFE\_1396 and AFE\_2463 when compared to other proteins.

# **Tertiary structure**

The tertiary structure was predicted by using SWISS-MODEL and I\_TASSER online tools. The tools predicts more than one model for each protein. The model 1  $\,$ 





| Si No | Accession Number | Protein Name                                  |
|-------|------------------|-----------------------------------------------|
| 1     | AFE 0174         | Exodeoxyribonuclease III                      |
| 2     | <br>AFE 0848     | 2-dehydro-3-deoxyphosphooctonate aldolase     |
| 3     |                  | Conserved domain protein                      |
| 4     | <br>AFE 0343     | 50S ribosomal protein L18                     |
| 5     | AFE 0560         | Putative uncharacterized protein              |
| 6     | <br>AFE 0075     | Putative uncharacterized protein              |
| 7     | <br>AFE 0076     | Polysaccharide biosynthesis protein           |
| 8     | <br>AFE 0783     | Putative uncharacterized protein              |
| 9     | AFE_0158         | Toluene ABC transporter, ATP-binding protein  |
| 10    | AFE_0297         | Riboflavin biosynthesis protein RibD          |
| 11    | AFE_0745         | Acetolactate synthase                         |
| 12    | AFE_0850         | Cell division protein FtsB                    |
| 13    | AFE_0851         | Elongation factor P                           |
| 14    | AFE_0259         | Biotin synthase                               |
| 15    | AFE_0373         | Transcriptional regulator, MerR family        |
| 16    | AFE_0008         | Spore coat protein                            |
| 17    | AFE_0378         | Outer membrane protein transport protein, OMP |
| 18    | AFE_0831         | Putative uncharacterized protein              |
| 19    | AFE_0847         | CTP synthase                                  |
| 20    | AFE_0555         | Lipoprotein signal peptidase                  |
| 21    | AFE_1151         | Putative uncharacterized protein              |
| 22    | AFE_1648         | Heat shock protein, Hsp20 family              |
| 23    | AFE_1054         | Putative uncharacterized protein              |
| 24    | AFE_1590         | Putative uncharacterized protein              |
| 25    | AFE_1256         | Putative uncharacterized protein              |
| 26    | AFE_1586         | DNA-binding protein, HU family                |
| 27    | AFE_1587         | Putative uncharacterized protein              |
| 28    | AFE_1632         | Putative uncharacterized protein              |
| 29    | AFE_1685         | Carboxysome shell peptide                     |
| 30    | AFE_1154         | Putative uncharacterized protein              |
| 31    | AFE_1396         | Serine protease, DO/DeqQ family               |
| 32    | AFE_2463         | Putative uncharacterized protein              |
| 33    | AFE_2957         | Sensor histidine kinase                       |
| 34    | AFE_2438         | Putative uncharacterized protein              |
| 35    | AFE_2437         | Cyclopropane-fatty-acyl-phospholipid synthase |
| 36    | AFE_2436         | Putative uncharacterized protein              |
| 37    | AFE_2435         | Putative uncharacterized protein              |
| 38    | AFE_2865         | Putative uncharacterized protein              |
| 39    | AFE_2866         | Putative uncharacterized protein              |
| 40    | AFE_2867         | Thioredoxin family protein                    |
| 41    | AFE_2868         | Putative uncharacterized protein              |
| 42    | AFE_2975         | Capsule polysaccharide export protein, BexD/C |
| 43    | AFE_2979         | WbbD domain protein                           |
| 44    | AFE_2654         | DNA polymerase IV                             |
| 45    | AFE_2655         | Probable ribonuclease VapC                    |
| 46    | AFE_2555         | Iron-sulfur cluster-binding protein           |
| 47    | AFE_2556         | Putative uncharacterized membrane protein     |
| 48    | AFE_2579         | Putative uncharacterized membrane protein     |
| 49    | AFE_2748         | ATP-dependent protease ATPase subunit HsIU    |
| 50    | AFE_2953         | Maf-like protein AFE_2953                     |
| 51    | AFE_2722         | Peptidase, U32 family                         |
| 52    | AFE_2087         | Putative uncharacterized membrane protein     |
| 53    | AFE_2445         | Putative uncharacterized membrane protein     |

Table 1: 65 Membrane proteins of Acidithiobacillus ferrooxidans

| 54 | AFE_2621 | NADH-quinone oxidoreductase, J subunit         |
|----|----------|------------------------------------------------|
| 55 | AFE_2516 | Putative uncharacterized membrane protein      |
| 56 | AFE_2493 | Putative uncharacterized membrane protein      |
| 57 | AFE_2996 | Putative uncharacterized membrane protein      |
| 58 | AFE_2607 | Transcriptional regulator, MerR family         |
| 59 | AFE_2266 | Acetyltransferase, GNAT family                 |
| 60 | AFE_2974 | Putative uncharacterized protein               |
| 61 | AFE_3103 | Phosphoribosyl transferase domain protein      |
| 62 | AFE_3018 | Phosphoenolpyruvate-protein phosphotransferase |
| 63 | AFE_3179 | Putative uncharacterized protein               |
| 64 | AFE_3180 | Putative uncharacterized membrane protein      |
| 65 | AFE_3186 | Mrr restriction system protein                 |

# Table 2; 27 proteins showing complete extremophilic activity considering the stable hit value of 50% maximum identity

| Sl.no | Accession no | Protein                                        |  |  |  |  |  |  |
|-------|--------------|------------------------------------------------|--|--|--|--|--|--|
| 1     | AFE_0848     | 2-dehydro-3-deoxyphosphooctonate aldolase      |  |  |  |  |  |  |
| 2     | AFE_0169     | Conserved domain protein                       |  |  |  |  |  |  |
| 3     | AFE_0075     | Putative uncharacterized protein               |  |  |  |  |  |  |
| 4     | AFE_0158     | Toluene ABC transporter, ATP-binding protein,  |  |  |  |  |  |  |
| 5     | AFE_0297     | Riboflavin biosynthesis protein RibD           |  |  |  |  |  |  |
| 6     | AFE_0373     | Transcriptional regulator, MerR family         |  |  |  |  |  |  |
| 7     | AFE_0378     | Outer membrane protein transport protein, OMP  |  |  |  |  |  |  |
| 8     | AFE_0847     | CTP synthase                                   |  |  |  |  |  |  |
| 9     | AFE_0555     | Lipoprotein signal peptidase                   |  |  |  |  |  |  |
| 10    | AFE_1685     | Carboxysome shell peptide                      |  |  |  |  |  |  |
| 11    | AFE_1396     | Serine protease, DO/DeqQ family                |  |  |  |  |  |  |
| 12    | AFE_2463     | Putative uncharacterized protein               |  |  |  |  |  |  |
| 13    | AFE_2957     | Sensor histidine kinase                        |  |  |  |  |  |  |
| 14    | AFE_2867     | Thioredoxin family protein                     |  |  |  |  |  |  |
| 15    | AFE_2868     | Putative uncharacterized protein               |  |  |  |  |  |  |
| 16    | AFE_2975     | Capsule polysaccharide export protein, BexD/C  |  |  |  |  |  |  |
| 17    | AFE_2654     | DNA polymerase IV                              |  |  |  |  |  |  |
| 18    | AFE_2655     | Probable ribonuclease VapC                     |  |  |  |  |  |  |
| 19    | AFE_2555     | Iron-sulfur cluster-binding protein            |  |  |  |  |  |  |
| 20    | AFE_2556     | Putative uncharacterized protein               |  |  |  |  |  |  |
| 21    | AFE_2748     | ATP-dependent protease ATPase subunit HslU     |  |  |  |  |  |  |
| 22    | AFE_2722     | Peptidase, U32 family                          |  |  |  |  |  |  |
| 23    | AFE_2621     | NADH-quinone oxidoreductase, J subunit         |  |  |  |  |  |  |
| 24    | AFE_2516     | Putative uncharacterized protein               |  |  |  |  |  |  |
| 25    | AFE_2266     | Acetyltransferase, GNAT family                 |  |  |  |  |  |  |
| 26    | AFE_2974     | Putative uncharacterized protein               |  |  |  |  |  |  |
| 27    | AFE_3018     | Phosphoenolpyruvate-protein phosphotransferase |  |  |  |  |  |  |

# Table 3: 5 Proteins Showing Complete Extremophilic Activity Considering the Stable Hit Value Of 35%

Maximum Identity

| Sl.no | Accession no | Protein                                |
|-------|--------------|----------------------------------------|
| 1     | AFE_0373     | Transcriptional regulator, MerR family |
| 2     | AFE_2555     | Iron-sulfur cluster-binding protein    |
| 3     | AFE_1396     | Serine protease, DO/DeqQ family        |
| 4     | AFE_2867     | Thioredoxin family protein             |
| 5     | AFE_2463     | Putative Uncharecterised Protein       |



# Figure 3: Phylogenetic tree analysis Iron sulphur cluster binding protein

| Table 4: Primary | structure | prediction | of unique | e membrane | proteins |
|------------------|-----------|------------|-----------|------------|----------|
|                  |           |            |           |            |          |

|         |          | · ·                |                  |                    |
|---------|----------|--------------------|------------------|--------------------|
| Si. No. | Gene     | No. of amino acids | Molecular weight | Iso-electric Point |
| 1       | AFE_0373 | 158                | 17489            | 7.66               |
| 2       | AFE_1396 | 479                | 48673            | 7.14               |
| 3       | AFE_2463 | 396                | 42614            | 7.82               |
| 4       | AFE_2555 | 228                | 26494.2          | 4.58               |
| 5       | AFE_2867 | 87                 | 9521.2           | 7.76               |



# Figure 4: Phylogenetic tree analysis Putative uncharacterised protein

| ci  |          | GOR4  |       |       |        |          |      |        |        |           |        |
|-----|----------|-------|-------|-------|--------|----------|------|--------|--------|-----------|--------|
| SI. | Gene     | Alpha | 310   | Pi    | Beta   | Extended | Beta | Bend   | Random | Ambiguous | Other  |
| NO. |          | helix | helix | helix | bridge | strand   | turn | region | coil   | states    | states |
| 1   | AFE_0373 | 88    | 0     | 0     | 0      | 18       | 0    | 0      | 52     | 0         | 0      |
| 2   | AFE_1396 | 93    | 0     | 0     | 0      | 130      | 0    | 0      | 256    | 0         | 0      |
| 3   | AFE_2463 | 92    | 0     | 0     | 0      | 73       | 0    | 0      | 231    | 0         | 0      |
| 4   | AFE_2555 | 101   | 0     | 0     | 0      | 35       | 0    | 0      | 92     | 0         | 0      |
| 5   | AFE 2867 | 25    | 0     | 0     | 0      | 20       | 0    | 0      | 42     | 0         | 0      |

# Table 5: Secondary structure prediction of unique membrane proteins using GOR tool



Figure 5: Phylogenetic tree analysis of Thioredoxin protein family

| c:  |          | SOPMA |             |       |        |          |      |        |        |           |        |
|-----|----------|-------|-------------|-------|--------|----------|------|--------|--------|-----------|--------|
| SI. | Gene     | Alpha | <b>3</b> 10 | Pi    | Beta   | Extended | Beta | Bend   | Random | Ambiguous | Other  |
| NO. |          | helix | helix       | helix | bridge | strand   | turn | region | coil   | states    | states |
| 1   | AFE_0373 | 98    | 0           | 0     | 0      | 2        | 6    | 0      | 52     | 0         | 0      |
| 2   | AFE_1396 | 93    | 0           | 0     | 0      | 127      | 46   | 0      | 213    | 0         | 0      |
| 3   | AFE_2463 | 52    | 0           | 0     | 0      | 112      | 22   | 0      | 210    | 0         | 0      |
| 4   | AFE_2555 | 151   | 0           | 0     | 0      | 7        | 9    | 0      | 61     | 0         | 0      |
| 5   | AFE_2867 | 28    | 0           | 0     | 0      | 22       | 4    | 0      | 33     | 0         | 0      |

# Table 6: Secondary structure prediction of unique membrane proteins using SOPMA tool



Figure 6: Phylogenetic tree analysis of Transcriptional regulator, merr family



AFE\_0373



AFE\_2463



Figure 7: SWISS\_MODEL structure prediction of 5 unique membrane proteins



Figure 8: T-Tasser structure prediction of 5 unique membrane proteins

predicted by each tool has been taken as the best fit based on its RMSD value.

# DISCUSSION

Finally, the functions of all these closely related organisms were identified. These functions were as follows . Acidithiobacillus ferrooxidans usually lives in pyrite deposits, which metabolises ferric and sulphur group to produce sulphuric acid. Acidithiobacillus thiooxidans takes up sulphur and produces sulphuric acid. Thioalkalivibrio is completely a salt tolerance bacterium which also produces sulphuric acid by consuming thesulphur group. T. nitratireducens is a thermophilic bacterium which reduces nitrate to nitric acid. Ectothiorhodospira is a gram negative phototrophic bacterium which also has the same function thereby reducing sulphur group. Hence the extremophilic organisms which we have isolated almost have a similar function (i.e.) all these organisms are involved in the reduction of nitrate to nitric acid and sulphur to sulphuric acid. So these organisms can be utilized in the process such as bioleaching, bio mining, etc.

# ACKNOWLEDGEMENTS

The authors want to thank and acknowledge the funding and support for the project "Differential membrane lipid profile and fluidity of *Acidithiobacillus ferrooxidans* during the process of adhesion to minerals" under SERB Scheme, DST-with the reference of DO No. SR/S3/ME/0025/2010.

All authors want to thank management of VIT University as it is the first and the only University in India to get 4-STAR rating from QS, the international ranking agen- cy and is a Winner of the prestigious national award from FICCI, 'University of the Year' for 2016. VIT is also Ranked No.1 Private Engineering Institution by MHRD, Govt of India [NIRF-2017 ranking] We thank VIT University for providing us an excellent R&D environment for completion of this work

We thank Ms. Poornima.G and Ms Hemalatha. K for their help in this work.

And whatsoever you do in word or deed, do all in the name of the Lord Jesus, giving thanks to God and the Father by him [Colossians 3:17]. We thank Almighty God providing all the wisdom and knowledge to design and complete this work.

# REFERENCES

- A Roy, A Kucukural, Y.Z., 2010. I -TASSER: a unified platform for automated protein structure and function prediction. Nature Protocols, (5), pp.725–738.
- Aeckersberg, F. et al., 2001. Vibrio fischeri Outer Membrane Protein OmpU Plays a Role in Normal Symbiotic Colonization Vibrio fischeri Outer Membrane Protein OmpU Plays a Role in Normal Symbiotic Colonization. Journal of Bacteriology, 183(22), pp.6590– 6597.
- Biasini, M. et al., 2014. SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research, 42(W1), pp.252–258.
- Devasia, P. & Natrajan K. A., 2004. Biotechnology in the mining industry. Resonance, (August), pp.27–34. Available at: http://link.springer.com/chapter/10.1007/978-94-017-0643-8 13.
- Freitag, H., Neupert, W. & Benz, R., 1982. of the Outer Mitochondria1 Membrane from *Neurospora crassa*. *European Journal of Biochemistry*, 123, pp.629–636.
- Garnier, J., Gibrat, J.-F. & Robson, B., 1996. [32] GOR method for predicting protein secondary structure from amino acid sequence. In B. T.-M. in Enzymology,

ed. Computer Methods for Macromolecular Sequence Analysis. Academic Press, pp. 540–553. Available at: http://www.sciencedirect.com/science/article/pii/S0

076687996660340.

- Gasteiger, E. et al., 2005. Protein Identification and Analysis Tools on the ExPASy Server. In J. M. Walker, ed. The Proteomics Protocols Handbook. Totowa, NJ: Humana Press, pp. 571–607. Available at: http://dx.doi.org/10.1385/1-59259-890-0:571.
- Geourjon C, D.G., 1995. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci, 6(11), pp.681–684.
- Guiliani, N. & Jerez, C.A., 2000. Molecular cloning, sequencing, and expression of omp-40, the gene coding for the major outer membrane protein from the acidophilic bacterium *Thiobacillus ferrooxidans*. *Appl Environ Microbiol*, 66(6), pp.2318–2324.
- Harneit, K. et al., 2006. Adhesion to metal sulfide surfaces by cells of *Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans* and *Leptospirillum ferrooxidans. Hydrometallurgy*, 83(1–4), pp.245–254.
- Harrison, A.P.J., 1984. The acidophilic thiobacilli and other acidophilic bacteria that share their habitat. Annual review of microbiology, 38, pp.265–292.
- Jap, B.K. & Walian, P.J., 1996. Structure and functional mechanism of porins. Physiological Reviews, 76(4), pp.1073–1088. Available at: http://physrev.physiology.org/content/76/4/1073.ab stract.
- Koebnik, R., Locher, K.P. & Van Gelder, P., 2000. Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Molecular microbiology, 37(2), pp.239–253.
- Manchur, M.A. et al., 2011. Characterization of an OmpA-like outer membrane protein of the acidophilic iron-oxidizing bacterium, *Acidithiobacillus ferrooxidans. Extremophiles*, 15(3), pp.403–410.
- Mogensen, J.E. & Otzen, D.E., 2005. Interactions between folding factors and bacterial outer membrane proteins. Molecular Microbiology, 57(2), pp.326–346.

Nikaido, H., 2003. Molecular basis of bacterial outer membrane permeability revisited. Microbiology and molecular biology reviews : MMBR, 67(4), pp.593 – 656. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcg i?artid=309051&tool=pmcentrez&rendertype=abstra ct.

Ramírez, P. et al., 2004. Differential Protein Expression during Growth of *Acidithiobacillus ferrooxidans* on Ferrous Iron, Sulfur Compounds, or Metal Sulfides. *Applied and Environmental Microbiology*, 70(8), pp.4491–4498.

- Stillman, B., Stewart, D. & Witkowski, J., 2009. Evolution: The Molecular Landscape,
- Valdés, J., Pedroso, I., Quatrini, R. & Holmes, D.S., 2008. Comparative genome analysis of *Acidithiobacillus ferrooxidans, A. thiooxidans* and *A. caldus*: Insights into their metabolism and ecophysiology. *Hydrometallurgy*, 94(1–4), pp.180–184.
- Valdés, J., Pedroso, I., Quatrini, R., Dodson, R.J., et al., 2008. *Acidithiobacillus ferrooxidans* metabolism: from genome sequence to industrial applications. *BMC genomics*, 9, p.597.
- Xia, L.X. et al., 2013. Attachment of *Acidithiobacillus ferrooxidans* onto different solid substrates and fitting through Langmuir and Freundlich equations. *Biotechnology Letters*, 35(12), pp.2129–2136.
- Yang, J. et al., 2015. The I-TASSER Suite: protein structure and function prediction. Nat Meth, 12(1), pp.7–8. Available at: http://dx.doi.org/10.1038/nmeth.3213.
- Zhang, Y. et al., 2002. Proteomic Analysis of Differential Protein Expression in *Acidithiobacillus ferrooxidans* Grown on Ferrous Iron or Elemental Sulfur. *Journal of Bacteriology*, 184(1), pp.313–317.
- Zhang, Y., 2008. I-TASSER server for protein 3D structure prediction. BMC bioinformatics, 9(1), p.40. Available at: http://www.biomedcentral.com/1471-2105/9/40.
- Zhao, X. et al., 2013. Bioleaching of chalcopyrite by *Acidithiobacillus ferrooxidans. Minerals Engineering*, 53(November), pp.184–192.