ORIGINAL ARTICLE

INTERNATIONAL JOURNAL OF RESEARCH IN PHARMACEUTICAL SCIENCES

Published by JK Welfare & Pharmascope Foundation

Journal Home Page: <u>www.ijrps.com</u>

Metagenome Analysis of Buccal Mucosal Biofilms to Identify Bacterial Prevalence in Subjects with and without type II Diabetes

Hari Priya A^{*}, Kannan A, Krithika C L

Department of Oral Medicine and Radiology, SRM dental college, Bharathi Salai, Ramapuram, Chennai– 600089, Tamil Nadu, India

Article History:	ABSTRACT
Received on: 22 NOV 2019 Revised on: 07 FEB 2020 Accepted on: 28 JAN 2020 <i>Keywords:</i> 16SrRNA, Veillonella, Granulicatella, type II Diabetes	To quantify the two most prevalent bacteria among Type II diabetic individu- als and controls from the buccal mucosal biofilms using molecular methods. To compare the percent prevalence of Veillonella and Granulicetella bacteria in uncontrolled Type II diabetic individuals with a control group. Subjects selected randomly and categorized into two groups within the age range of 25 to 40 years diagnosed with and without Type II diabetes based on their HbA1c values. The samples of buccal mucosa biofilms are collected in sterile swabs and stored in bacterial lysis buffer, which was later subjected to quantification of DNA followed by 16S rRNA amplification and sequencing. The sequence obtained is then surveyed using BLAST Analysis to define the bacterial flora and two bacteria, namely Veillonella and Granulicatella are selected for fur- ther amplification and quantification by real-time PCR to express the bacteria in copy numbers. From the collected buccal mucosal biofilm samples (n=24), which was categorized into Type II diabetes (12) and non-diabetic (12). The sequence subjected to BLAST analysis gave a List of bacteria from which Veil- lonella sp. and Granulicatella sp. were selected and administered to real-time PCR for amplification and quantification, which revealed an increased bacte- rial prevalence in Type II diabetic subjects to non-diabetic subjects which was also proved statistically. Based on the results obtained, there is a significant prevalence of bacterial content in Type II diabetic subjects compared to non- diabetic subjects.

*Corresponding Author

Name: Hari Priya A Phone: 9566157661 Email: dr.haripriya92@yahoo.com

ISSN: 0975-7538

DOI: https://doi.org/10.26452/ijrps.v11i2.2132

Production and Hosted by

IJRPS | www.ijrps.com

© 2020 | All rights reserved.

INTRODUCTION

Diabetes mellitus, a pan- metabolic disorder, is characterized by chronic hyperglycemia. Diabetes a syndrome, rather than a disease entity, is classified according to whether hyperglycemia is the primary feature or is a part of some other disorder, such as those of pancreas, endocrine system, or some well defined genetic syndromes. The primary category of diabetes is presently differentiated into type 1 and type 2 depending on whether it emerges from subtotal destruction of β -cells of the pancreas with predominant absolute insulin deficiency (Type 1) or advances from a complex interaction between the deterioration of insulin action with relative insufficiency of insulin secretion (Type 2).

Amidst worldwide chronic diseases, diabetes and periodontitis seem to prevail the most with a bidirectional relationship, including their underlying regulatory mechanism. Hyperglycemic status has a direct effect on the microbial composition, collagen metabolism and cellular function. By development of advanced glycation end-products (AGEs) contributing to the modification of the extracellular matrix with the binding to a cellular receptor, further exaggerating inflammation (Abass and Omer, 2011; Chang and Lim, 2012)

Various complications such as retinopathy with potential blindness, nephropathy leading to renal failure, neuropathy with increased risk of nonhealing necrotic ulcers, cardiovascular, perivascular, cerebrovascular, autonomic dysfunction including sexual dysfunction may accompany diabetic individuals in the long run.

Periodontitis also is known as "the sixth complication of diabetes mellitus," is the most common oral disease associated with diabetes. Periodontitis is a multifactorial disease of the oral cavity as a consequence of local infections leading to irreversible destruction of the periodontia (Abass and Omer, 2011).

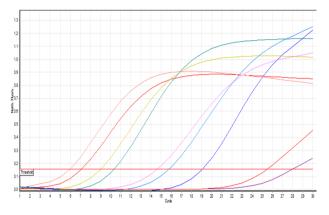
Specific protein-coding or gene structure are found using the phylogenetic markers. One of these markers is the 16S rRNA, it is the most widely used marker having a 1500 base pair gene coding for catalytic RNA that is part of the 30S ribosomal subunit making this the most advisable marker.

The bacterial microbes are site-specific relating to the vast surfaces present in the oral cavity, coated with a plethora of bacteria, the customary of bacterial biofilm, whereas the bacteria Veillonella and Granulicatella are most commonly evidenced bacterial microbe present in all sites of the oral cavity. Hence these both bacteria were selected for our study (Aas *et al.*, 2005).

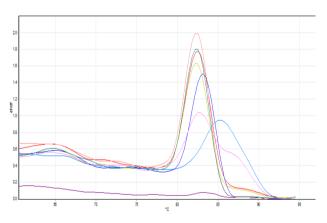
In this study, we focused on utilizing cultureindependent molecular techniques for understanding the breadth of the bacterial variance of Veillonella and Granulicatella in the oral cavity of Type II diabetic subjects with non-diabetic subjects.

The study was reviewed and approved by the SRM Dental College Institutional Review Board and Ethical Committee, IRB approval number SRMDC/IRB/2016/MDS/No.901. All the study participants provided informed, written and signed consent before study enrollment.

MATERIALS AND METHODS


Selection Criteria

Twenty four subjects(n=24) were included in this study, comprising of both male and female genders, with an age group ranging from 25 years to 40 years. They were divided into Twelve uncontrolled types

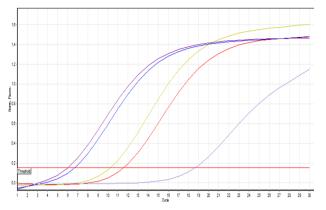

II diabetic subjects and twelve non-diabetic subjects as a control based on their HbA1c value.

Subjects included should not suffer from any oral lesions and having less than 5mm deep periodontal pockets evaluated using the CPITN Index and subjects presented with neither redness nor inflammation of the gums were selected.

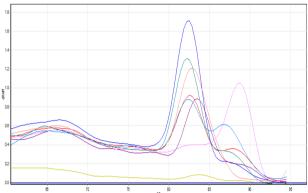
Subjects with caries on the teeth were excluded based on their DMFT Index. The subjects under any other drugs except antidiabetic medications for the last 6 months are excluded from this study.

Graph 1: Amplification Curves of *Veillonella* in Diabetic Samples 1 to 8

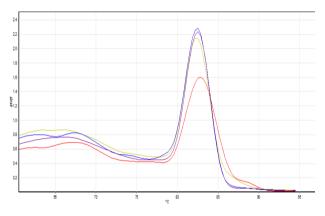
Graph 2: Melt Curves of *Veillonella* in Diabetic Samples 1 to 8

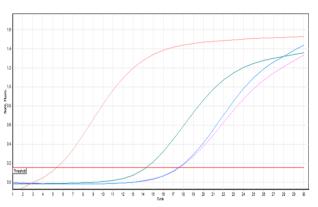

Sample collection and DNA extraction

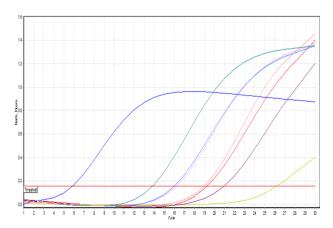
Buccal mucosal samples were collected with sterile swabs in universal bacterial lysis buffer containing 2% SDS (SIGMA-ALDRICH, Cat# 71736) and 10% Triton-X100 (SRL Fine Chemicals, Cat#64518).

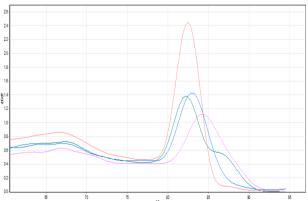

Bacterial cells were lysed by heating the samples at 95° C for 10 minutes.

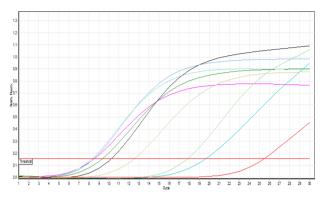
Quantification of DNA

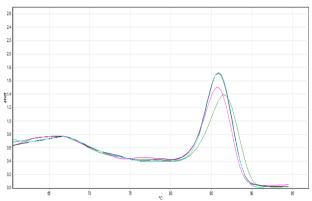

The DNA extracted from samples were quantified by QUBIT Fluorometer to determine the total DNA concentration.

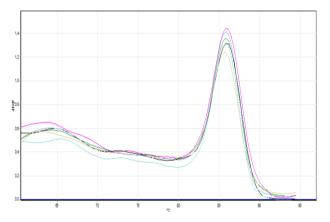

Graph 3: Amplification Curves of *Veillonella* in Diabetic Samples 9 to 12

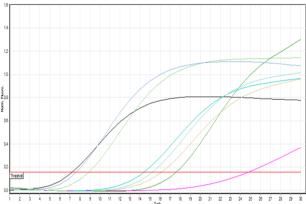

Graph 6: Melt Curves of *Veillonella* in Control Samples 1 to 8

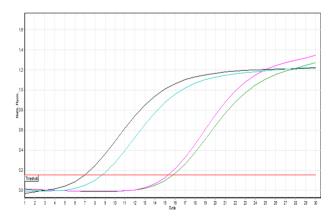

Graph 4: Melt Curves of *Veillonella* in Diabetic Samples 9 to 12


Graph 7: Amplification Curves of *Veillonella* in Control Samples 9 to 12

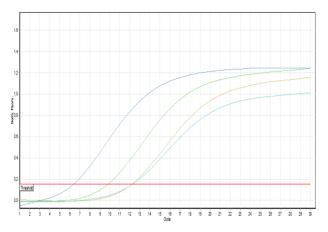

Graph 5: Amplification Curves of *Veillonella* in Control Samples 1 to 8


Graph 8: Melt Curves of *Veillonella* in Control Samples 9 to 12

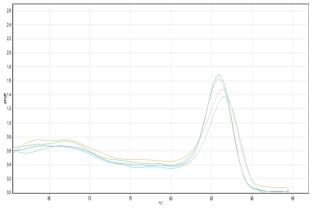

Graph 9: Amplification Curves of *Granulicatella* in Diabetic Samples 1 to 8


Graph 12: Melt Curves of *Granulicatella* in Diabetic Samples 9 to 12

Graph 10: Melt Curves of *Granulicatella* in Diabetic Samples 1 to 8



Graph 13: Amplification Curves of *Granulicatella* in Control Samples 1 to 8



Graph 11: Amplification Curves of *Granulicatella* in Diabetic Samples 9 to12

Graph 14: Melt Curves of *Granulicatella* in Control Samples 1 to 8

Graph 15: Amplification Curves of *Granulicatella* in Control Samples 9 to 12

Graph 16: Melt Curves of *Granulicatella* in Control Samples 9 to 12

16S rRNA amplification and sequencing

Equal concentration of genomic DNA samples was subjected to a polymerase chain reaction (PCR) for amplification of the 16S rRNA gene hypervariable regions V1 to V9 with the following set of primers: Forward: AGTTTGATCCTGGCTCAG, and Reverse: TACCTTGTTACGACTT under the following conditions. After an initial denaturation at 94°C for 4 minutes, the samples were subjected to 40 cycles of 94°C for 45 seconds, 48°C for 45 seconds, 72°C for 2 minutes, with a final extension at 72° C for 5 minutes. The PCR amplified products were cleaned with QIA quick PCR purification kit (Cat# 28104) to remove primer dimers, which otherwise may interfere with sequencing reactions. The purified PCR amplicons were then subjected to sanger sequencing (also called direct sequencing) to determine the bacterial species present in the samples (Table 1).

BLAST Analysis

The nucleotide sequences identified by sanger sequencing were compared to the oral microbiome

database to determine the presence of bacterial species that are known to be present in the oral cavity. The oral microbiome database is a publicly accessible free database and is available at http://w ww.homd.org/.

Amplification and quantitation of Veillonella and Granulicatella by Real-time PCR

To identify the quantitative presence of the above two bacteria (Table 2 & Table 3), the DNA samples obtained from the patients were subjected to real-time PCR analysis to determine their quantitative presence. 2ng of total DNA was subjected to polymerase chain reaction (PCR) amplification with species-specific primers in the rotor gene Q realtime PCR unit. The following set of primers that are present within the 16S rRNA gene were used for each of the species:

Veillonella

Forward: CCGTGATGGGATGGAAACTGC

Reverse: CCTTCGCCACTGGTGTTCTTC

Granulicatella

Forward: GGCGCTAACAGTTACTCTAGCAC

Reverse: ACTCCTACGGGAGGCAGC

 10μ M of each of the above primers were added to BRYT-green RT-Master Mix (Cat# A6001, Promega Corporation, USA) in 20μ l reaction, and samples were analyzed in Rotor-Gene Q real-time PCR equipment (Qiagen, Germany). The following amplification condition was used: after an initial denaturation at 95°C for 10 min, samples were amplified for 25 cycles at 94°C for 30 s, 55°C for 30 s, 72°C for 30 s. The following six standards were used to identify the copy number of amplicons in each of the sample - 106, 105, 104, 103, 102 and 101. Upon completion of the real-time run, the samples were quantified with in-system software about standards, and the presence of bacteria was expressed as copy numbers.

STATISTICAL ANALYSIS

The descriptive statistical analysis obtained for Veillonella and Granulicatella bacteria in both Type II Diabetic and Control groups is demonstrated in the (Table 4 & Table 5). The Paired T-Test obtained for both Veillonella and Granulicetella bacteria in Both Diabetic and Control groups is demonstrated in the (Table 6 & Table 7). Based on the statistical analysis obtained we reject the null hypothesis

The result shows us a significant increase in bacterial content of Type II Diabetic subject's oral cavity in comparison to non-diabetic subjects with a p-value <0.05.

S.No	Description	Max Score	Total Score	Query Cover	E value	Ident
1	Uncultured Granulicatella sp. partial 16S rRNA gene, isolate W438T_4032	226	226	78%	8e-55	68%
2	Granulicatella adiacens gene for 16S rRNA, strain: GF02	856	856	100%	0.0	95%
3	Granulicatella para-adiacens strain C593 16S rRNA gene, partial sequence	856	856	100%	0.0	95%
4	Granulicatella elegans gene for 16S rRNA, partial sequence, strain: PAGU 792	856	856	100%	0.0	95%
5	Uncultured Sphingomonas sp.clone EHFS1_S03b 16S rRNA gene, partial sequence	854	854	100%	0.0	95%
6	Granulicatella adiacens strain 04356101 16S rRNA gene, partial sequence	852	852	100%	0.0	95%
7	Gemella haemolysans clone IC039 16S rRNA gene, partial sequence	62.6	62.6	22%	5e-06	71%
8	Gemella taiwanensis strain NTUH_5572 16S rRNA, partial sequence	392	392	71%	2e-105	76%
9	Gemella parahaemolysans strain NTUH_1465 16S rRNA, partial sequence	392	392	71%	2e-105	76%
10	Gemella sanguinis strain 2045- 94 16S rRNA gene, p. sequence	392	392	71%	2e-105	76%
11	Gemella morbillorum gene for 16S rRNA, p. sequence, strain: JCM 12968	387	387	71%	1e-103	75%
12	Oceanobacillus iheyensis partial 16S rRNA gene, strain Marseille- P1365	340	340	69%	1e-89	74%
13	Granulicatella adiacens strain 04356101 16S rRNA gene, p. sequence	340	340	69%	1e-89	74%
14	Bacillus asahii strain FJAT- 28834 16S rRNA gene, p. sequence	338	338	72%	4e-89	74%
15	Oceanobacillus kimchii partial 16S rRNA gene, strain Marseille- P393	336	336	69%	1e-88	74%
16	Oceanobacillus iheyensis strain AM9 16S rRNA gene, p. sequence	336	336	69%	1e-88	74%
17	Haloalkaliphilic bacterium Ve2- 10-82 16S rRNA gene, partial sequence	336	336	69%	1e-88	74%

Table 1: List of Oral Bacterial Flora Obtained from Blast Analysis

Continued on next page

Tahle	1 continued					
S.No	Description	Max	Total	Query	E value	Ident
	ľ	Score	Score	Cover		
18	Uncultured Firmicutes bac-	331	331	69%	6e-87	74%
-	terium clone QZ-J41 16S rRNA					
	gene, partial sequence					
19	Bacillus okhensis strain Kh	322	322	69%	3e-84	74%
	10-101 16S rRNA gene, partial					
	sequence					
20	Corynebacterium singulare	71.6	71.6	14%	1e-08	73%
	strain C2E1 16S rRNA gene,					
	partial sequence					
21	Uncultured Alcaligenes sp.	57.2	57.2	9%	2e-04	76%
	clone JLAF 16S rRNA gene,					
22	partial sequence Uncultured Ruminococcaceae	51.8	51.8	11%	0.010	73%
22	bacterium clone S1_B41 16S	51.0	51.0	11%0	0.010	73%0
	rRNA gene, partial sequence					
23	Actinobacterium CA10 16S	51.8	51.8	9%	0.010	77%
-0	rRNA gene, p. sequence	01.0	0110	270	010 20	
24	Propionibacterium sp. CA7 16S	51.8	51.8	9%	0.010	77%
	rRNA gene, p. sequence					
25	Candidatus Methylopumilus	48.2	48.2	8%	0.12	75%
	planktonicus partial 16S rRNA					
	gene, strain MMS-14A-134					
26	Oscillibacter velericigenes	48.2	48.2	10%	0.12	75%
	strain AGM2 16S rRNA gene, p.					
27	sequence Uncultured Parvimonas sp.		46.4	1 5 0/	0.40	700/
27	· · · · · · · · · · · · · · · · · · ·	46.4	40.4	15%	0.40	70%
	partial 16S rRNA gene, isolate 78N_17281					
28	Pelosinus sp. UF01, complete	46.4	46.4	4%	0.40	87%
20	genome	1011	1011	170	0110	0770
29	Uncultured Bifidobacterium sp.	46.4	46.4	11%	0.40	74%
	clone 24B-39 16S rRNA gene, p.					
	sequence					
30	Uncultured Myobacterium sp.	46.4	46.4	9%	0.40	93%
	isolate DGGE gel band my6 16S					
	rRNA gene, partial sequence					
31	Uncultured alpha proteobac-	46.4	46.4	8%	0.40	74%
	terium clone WT172B01F 16S					
32	rRNA gene, p. sequence Uncultured Microlunatus sp.	44.6	44.6	11%	1.4	72%
52	gene for 16S rRNA, partial	44.0	44.0	1170	1.4	7 2 70
	sequence, clone, Up30					
33	Actinomyces sp. ICM58a 16S	44.6	44.6	11%	1.4	72%
	rRNA gene, partial sequence					
34	Arcanobacterium	42.8	42.8	9%	4.9	75%
	haemolyticum strain WH01 16S					
	rRNA gene, partial sequence					
35	Arcanobacterium	42.8	42.8	9%	4.9	75%
	haemolyticum strain WH01 16S					
	rRNA gene, partial sequence					

Continued on next page

Table	Table 1 continued							
S.No	Description	Max Score	Total Score	Query Cover	E value	Ident		
36	Propionibacterium acnes subsp. acnes strain HKG 284 16S rRNA gene, p. sequence	42.8	42.8	9%	4.9	75%		
37	Streptococcus gallolyticus strain VTM1R38 16S rRNA gene, pa. sequence	354	354	98%	4e-94	78%		
38	Streptococcus macedonicus strain PON54 16S ribosomal RNA gene, partial sequence	354	354	98%	4e-94	78%		
39	Streptococcus pneumoniae SPN994039 draft genome	345	1355	98%	2e-91	77%		
40	Uncultured Firmicutes bac- terium clone F14_5B_FL 16S ribosomal RNA gene, partial sequence	345	345	93%	2e-91	78%		
41	Streptococcus mitis strain CIP 104997 16S rRNA gene, partial sequence	345	345	93%	2e-91	78%		
42	Streptococcus cuniculi partial 16S rRNA gene, strain NED 12-00041-7C	343	343	92%	7e-91	79%		
43	Streptococcus bovis strain FMA766 16S rRNA gene, partial sequence	342	342	96%	3e-90	78%		
44	Uncultured Serratia sp. clone C137 16S rRNA gene, partial sequence	342	342	93%	3e-90	78%		
45	Streptococcus sp. oral taxon 431 strain 5-91 16S rRNA	340	340	93%	9e-90	78%		
46	Streptococcus equinus strain CCUG 4214 16S rRNA gene, partial sequence	340	340	93%	9e-90	78%		
47	Rumen bacterium IVRI-RM- 1006 16S rRNA gene, partial sequence	340	340	89%	9e-90	79%		
48	Streptococcus macedonicus strain EQ29 16S rRNA gene, partial sequence	338	338	99%	3e-89	77%		
49	Bacterium NLAE-zl-C272 16S rRNA gene, p. sequence	338	338	96%	3e-89	78%		

RESULTS AND DISCUSSION

Sequence Analysis

To determine the bacterial species present in the buccal swab samples of patients with and without Type II diabetes, the DNA extracted from the buccal swabs of five uncontrolled diabetic patients and five non-diabetic controls were first amplified by PCR with universal bacterial primers that are capable of amplifying the 16S rRNA gene of all bacterial species in any given sample. The PCR amplicons thus obtained were subjected to sanger sequencing. Of the above samples, all diabetic samples showed interpretable sequence outputs, whereas only one from the control group showed interpretable sequence output.

This could be because the amounts of bacterial DNA in these controls were either absent or were present below detectable limits of the present amplification protocol. Sequence analysis by comparison of the identified sequence with those in the oral microbiome database (http://www.homd.org/) indicated the presence of Granulicatella in most of the uncontrolled diabetic samples. One sample showed Veillonella as the top hit, followed by Granulicatella during data analysis. The one control sample showed none of the above two bacteria but had mostly streptococcus species.

Real-Time PCR Analysis

To determine the relative copies of Veillonella and Granulicatella in the buccal samples, the samples were amplified in the presence of speciesspecific primers as described in the methods section. Veillonella and Granulicatella specific signals were identified by running a melt curve analysis cycle (Graph 1, Graph 2, Graph 3, Graph 4, Graph 5, Graph 6, Graph 7, Graph 8, Graph 9, Graph 10, Graph 11, Graph 12, Graph 13, Graph 14, Graph 15, Graph 16). This involved a temperature ramp step that ranged between 50°C to 99°C with an initial hold for 90 seconds followed by a rise of 1°C at each step with a 5-second hold to enable the melting process. Analysis of the melt curve showed a sharp peak for Veillonella at 82.5°C and Granulicatella at 86°C. Those samples that showed similar peaks were included for analysis, while those that deviated from these control peaks were excluded from further analysis as these indicated primer-dimers or non-specific amplification. The data analysis was done after taking the average of indicated copy numbers for each of the bacteria. This showed Veillonella to be present 3.5 fold more in the diabetes samples than the controls, while Granulicatella was present 1.5 fold more in the diabetes samples than controls.

Arctaeus of Cappadocia coined the term Diabetes, literally meaning "siphon," characteristic of polyuria in uncontrolled disease. In the recent times, Diabetes has taken over the title, " Captain of the men of death," from tuberculosis and syphilis so much so, that the diabetologist is considered the last of internists, a physician who needs to have intimate knowledge of the function of each organ of the body in order to effectively treat his patient.

Recent works of literature displayed a bidirectional relationship between diabetes and periodontitis in which subjects with controlled glycemic metabolic level as measured by HbA1c demonstrated a slower attachment loss than uncontrolled subjects, in contrast, few studies showed an improvement in glycemic control following periodontal treatment (Chang and Lim, 2012).

Po-Chun Chang and Lum Peng Lim, in their study, suggested an epidemiological correlation between diabetes and periodontal health wherein, diabetes is said to affect the periodontia due to hyperglycemic levels and indirectly regulated by advanced glycation end-products(AGEs).

The main virulence factor of the microorganisms involved in periodontitis is lipo, 125 Polysaccharides (LPSs) an endotoxin, the pathogenesis is activated by identification of pathogen-associated molecular structures from Toll-like receptors (TLRs), release of ROS from defending cells by correspondingly inducing oxidative stress, proinflammatory cytokines, and immunoregulatory complexes through the NF-kB pathway (Chang and Lim, 2012).

J. Michael Janda and Sharon L. Abbott, in their literature, showed that the exposed taxa are directly in debt to ease the role of the 16S rRNA gene sequence disputed to the more incommodious administration of DNA-DNA hybridization investigations. DNA-DNA hybridization is the emphatically gold standard for recommended unfamiliar species and for the precise stint of a strain with obscure properties to correct the taxonomic unit (Janda and Abbott, 2007).

Carl Woese and many other researchers commenced to analyze and sequence the 16S rDNA genes of diverse bacterial phylotypes using DNA sequencing, a prompt technology used three decades before, which is still under process with many advancements in technology till date (Woo *et al.*, 2008).

Ramya Srinivasan et al. proposed a genus-level concordance rate of 96% and species-level concordance rate of 87.5%, in their study, to distinguish the difference between 16S rRNA based on conventional culture-based identification in a wide range of

Sample	Veillonella						
No.		Diabetes 1 to	Control 1 to 12				
	Individual id	Ct	Calc Conc (copies/ul)	Individual id	Ct	Calc Conc (copies/ul)	
1	1v	6.54	4,423,798,058	1v	19.27	776,075	
2	2v	8.68	1,153,702,723	2v	26.21	9,937	
3	3v	18.91	3,477,366,073	3v	5.88	1,868,724	
4	4v	27.79	7,084	4v	20.95	270,201	
5	5v	14.25	34,856,671	5v	16.22	5,257,039	
6	6v	15.58	15,140,325	6v	16	6,045,280	
7	7v	10.08	480,195,179	7v	13.86	23,148,047	
8	8v	5.13	10,730,874,309	8v	18.99	920,269	
9	9v	11.61	85,890,380	9v	17.66	1,922,050	
10	10v	10.29	197,383,466	10v	17.59	2,010,276	
11	11v	6.73	1,844,990,568	11v	14.34	15,516,216	
12	12v	6.04	4,188,128,590	12v	5.42	2,839,090,722	
		Average =	1,817,316,517		Average =	643,447,504	

Table 2: Bacterial Quantification of Veillonella in Type II Diabetic and Non Diabetic Subjects

Table 3: Bacterial Quantification of Granulicatella in Type II Diabetic and Non Diabetic Subjects

Sample	Granulicatella							
No.								
		Diabetes 1 to	o 12		Control 1 to 1	12		
	Individual	Ct	Calc Conc		Ct	Calc Conc		
	id		(copies/ul)	id		(copies/ul)		
1	1g	9.25	805,183,962	1g	17.61	2,192,350		
2	2g	8.04	1,726,794,022	2g	24.83	23,585		
3	3g	10.24	1,470,358,588	3g	7.25	432,372,988		
4	4g	19.63	1,191,166	4g	14.41	16,423,520		
5	5g	12.31	118,198,939	5g	16.16	5,468,252		
6	6g	17.91	3,498,443	6g	8.91	517,898,421		
7	7g	8.01	1,759,612,598	7g	15.27	9,537,470		
8	8g	8.27	1,496,015,219	8g	7.66	1,136,519,350		
9	9g	15.84	6,021,388	9g	12.26	57,189,921		
10	10g	15.37	8,085,091	10g	9.86	258,863,518		
11	11g	7.02	1,532,943,937	11g	12.34	54,301,449		
12	12g	8.75	518,618,518	12g	6.42	2,239,925,060		
		Average =	700,711,356		Average =	480,725,124		

Table 4: Mean and Standard Deviation for Veillonella

Paired Sa	mples Statistics	Mean	Ν	Std. Deviation	Std. Error Mean
Pair 1	Veillonella	1230382010.9167	24	2476820103.60452	505578786.54154
	Group	.5000	24	.51075	.10426

Paired Samples Statistics		Mean	N	Std. Deviation	Std.	Error Mean
Pair 1	Granulicatella Group	590718239.7917 .5000	24 24	728975981.57345 .51075	5 1488 .104	301599.13329 26
Table 6: P	Paired T-test for Vei	illonella				
Paired Samples Test		Paired Differenc	es	Т	Df	Sig. (2- tailed)
		95% Confidence Difference Upper	e Interval	l of the		
Pair 1	Veillonella Group	- 2276251414.94	015	2.434	23	.023
Table 7: P	Paired T-test for Gra	anulicatella				
Paired Sa	amples Test	Paired Differer	ices	Т	Df	Sig. (2- tailed)
		95% Confiden Difference Upper	ce Interva	al of the		
Pair 1	Granulicatella Group	- 898537799.86	157	3.970	23	.001

Table 5: Mean and Standard Deviation for Granulicatella

gram-negative rods and gram-positive cocci as well as common gram-negative cocci (Srinivasan et al., 2015).

Jørn A. Aas et al., in their study on defining the normal oral microflora conducted in nine different sites of the oral cavity, suggested that the predominant bacterial species found were; Gemella, Granulicatella, Streptococcus, and Veillonella evident involving most of the sites (Aas et al., 2005).

Izumi Mashima et al. reported the distribution and frequency of Veillonella species showcasing the prime species in both periodontal pockets and gingival sulcus is V.parvula also with other species such as V.atypica, V.dispar, V.tobetsuensis with V.rogasae the least found in the oral cavity (Mashima et al., 2018).

Supathep Tansirichaiya et al. determined the genes causing the reduction in antimicrobial susceptibility by oral microbes. In their study, the gene fabl enclosing enovl-acvl carrier protein reductase(ENR), an essential protein for fatty acid synthesis and the gene gale, was evidenced in E.coli and Veillonella parvula species which inhibits the binding of antiseptics to bacteria thus conferring antimicrobial resistance (Yungun-Dong and Jongno-Gu, 2007).

Peng Zhou et al. considered that Veillonella species

as early colonizers and which can aggregate with initial colonizer and periodontal pathogen. Veillonella species provide various nutrients for the growth of the pathogen. They also provide a bridging effect in the ecology of the oral cavity, they modify the local environment and produce hemin, which helps the growth of lateral colonizers. Thus the knowledge on them will help in disease prevention. These species are more tolerant of O2. Veillonella is not only to aggregate with various bacteria in the oral cavity but can also optimize the microbes for periodontopathogen (Zhou et al., 2017).

As in this study, the chief microbial organisms involved in periodontitis like Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola were not identified. Inconsistent with the previous pieces of literature, this study proposed a significant predominance of Veillonella and Granulicatella species in Type II diabetic subjects projecting as a causative factor for periodontitis in comparison to non-diabetic subjects.

CONCLUSIONS

This study demonstrates the efficacy of metagenomic analysis of 16S rRNA for defining the bacterial flora and also adding on to the previous kinds of literature, projects the abundance of bacterial quantity in Type II Diabetic subjects to non-diabetic subjects with statistical correlation. It is fundamental to have a thorough knowledge on the bacterial diversity, the impact of diabetes on periodontia and viceversa, for executing appropriate management of oral infections in diabetic patients with specific antibiotic therapy to avert antibiotic resistance, an upcoming global treat.

ACKNOWLEDGEMENT

We are indebted to Dr. Ramanathan Arvind(Enable Biolabs Pvt.Lmt) for providing clinical strains and routine workout in the microbiology laboratories. We thank our patients who participated in our study.

REFERENCES

- Aas, J. A., Paster, B. J., Stokes, L. N., Olsen, I., Dewhirst, F. E. 2005. Defining the Normal Bacterial Flora of the Oral Cavity. *Journal of Clinical Microbiology*, 43(11):5721–5732.
- Abass, V. T., Omer, S. A. 2011. Oral Findings and Microflora in Type II Diabetes Mellitus in Sulaimani City. *Journal of Sulaimani Medical College*, 1(1):13–28.
- Chang, P. C., Lim, L. P. 2012. Interrelationships of periodontitis and diabetes: A review of the current literature. *Journal of Dental Sciences*, 7(3):272–282.
- Janda, J. M., Abbott, S. L. 2007. 16S rRNA Gene Sequencing for Bacterial Identification in the Diagnostic Laboratory: Pluses, Perils, and Pitfalls. *Journal of Clinical Microbiology*, 45(9):2761–2764.
- Mashima, I., Liao, Y. C., Miyakawa, H., Theodorea, C. F., Thawboon, B., Thaweboon, S., Nakazawa, F. 2018. Veillonella infantium sp. nov., an anaerobic, Gram-stain-negative coccus isolated from tongue biofilm of a Thai child. *International Journal of Systematic and Evolutionary Microbiology*, 68(4):1101–1106.
- Srinivasan, R., Karaoz, U., Volegova, M., Mackichan, J., Kato-Maeda, M., Miller, S., Lynch, S. V. 2015. Use of 16S rRNA Gene for Identification of a Broad Range of Clinically Relevant Bacterial Pathogens. *PLOS ONE*, 10(2):e0117617.
- Woo, P. C. Y., Lau, S. K. P., Teng, J. L. L., Tse, H., Yuen, K. Y. 2008. Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. *Clinical Microbiology and Infection*, 14(10):908–934.
- Yungun-Dong, Y. C., Jongno-Gu 2007. Innate immune responses of gingival epithelial cells to nonperi-

odontopathic and periodontopathic bacteria. *Journal of Periodontal Research*, 42(6):503–510.

Zhou, P., Li, X., Huang, I.-H., Qia, F. 2017. Veillonella Catalase Protects the Growth of Fusobacterium nucleatum in Microaerophilic and Streptococcus Gordonii-Resident Environments. *Applied and Environmental Microbiology*, 83(19).